Antimicrobial, anticancer, and antioxidant potential of two dominant macro-lichen Dirinaria aegialita and Parmotrema praesorediosum collected from Similipal Biosphere Reserve of Odisha, India

Srimay Pradhan Dalip Kumar Upreti Rajesh Kumar Meher Kunja Bihari Satapathy   

Open Access   

Published:  Jun 10, 2022

Abstract

The present study was undertaken to evaluate the antimicrobial, antioxidant, and anticancer activity of Dirinaria aegialita (Afzel. ex Ach.) B.J. Moore and Parmotrema praesorediosum (Nyl.) Hale, the two dominant macrolichens taxa from the Similipal Biosphere Reserve of Odisha. Both the lichens were evaluated for their efficacy against three bacterial species such as Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis, and three fungal species such as Aspergillus niger, Trichoderma harzianum, and Candida albicans. The D. aegialita and P. praesorediosum showed higher inhibitory effect against Bacillus subtilis and Staphylococcus aureus, respectively. D. aegialita also showed the higher inhibitory activity against MCF-7 and MDA MB-231 breast cancer cell line as compared to P. praesorediosum. Besides, D. aegialita was found to have better antioxidant activity than P. praesorediosum in scavenging assay. Thus, the results of the above study confirmed that D. aegialita species is having better potential in its antibacterial, antioxidant, and anticancer activity as compared to P. praesorediosum.


Keyword:     Pharmaceutical evaluation Lichenized fungi Mayurbhanj Crude extract.


Citation:

Pradhan S, Upreti DK, Meher RK, Satapathy KB. Antimicrobial, anticancer, and antioxidant potential of two dominant macro-lichen Dirinaria aegialita and Parmotrema praesorediosum collected from Similipal Biosphere Reserve of Odisha, India. J App Biol Biotech. 2022. Online First.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Rankovi? B, Kosani? M. Lichens as a potential source of bioactive secondary metabolites. In: Lichen Secondary Metabolites. Cham: Springer; 2019. p. 1-29. https://doi.org/10.1007/978-3-030-16814-8_1

2. Martellos S, d'Agostino M, Chiarucci A, Nimis PL, Nascimbene J. Lichen distribution patterns in the ecoregions of Italy. Diversity 2020;12:294. https://doi.org/10.3390/d12080294

3. Lücking R, Hodkinson BP, Leavitt SD. Corrections and amendments to the 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota. Bryologist 2017;120:58-69. https://doi.org/10.1639/0007-2745-120.1.058

4. Sutar RR, Gaikwad SB, Mapari SV, Behera BC. Lichens: Traditional use and biological activities. Bot Pac 2021;10:69-82. https://doi.org/10.17581/bp.2021.10202

5. Shukla V, Patel DK, Bajpai R, Semwal M, Upreti DK. Ecological implication of variation in the secondary metabolites in parmelioid lichens with respect to altitude. Environ Sci Pollut Res Int 2016;23:1391-7. https://doi.org/10.1007/s11356-015-5311-z

6. Goga M, Ele?ko J, Marcin?inová M, Ru?ová D, Ba?korová M, Ba?kor M. Lichen metabolites: An overview of some secondary metabolites and their biological potential. In: Co-Evolution Secondary Metabolites. Berlin: Springer; 2020. p. 175-209. https://doi.org/10.1007/978-3-319-96397-6_57

7. Calcott MJ, Ackerley DF, Knight A, Keyzers RA, Owen JG. Secondary metabolism in the lichen symbiosis. Chem Soc Rev 2018;47:1730-60. https://doi.org/10.1039/C7CS00431A

8. Shahid M, Rasool A, Anjum F, Rehman MT. Biomedical perspectives of lichen?derived products. In: Lichen?derived products: Extraction Applications. Hoboken, New Jersey: Wiley; 2020. p. 263-76. https://doi.org/10.1002/9781119593249.ch12

9. Thadhani VM, Karunaratne V. Potential of lichen compounds as antidiabetic agents with antioxidative properties: A review. Oxid Med Cell Longev 2017;2017:2079697. https://doi.org/10.1155/2017/2079697

10. Oh JM, Kim YJ, Gang HS, Han J, Ha HH, Kim H. Antimicrobial activity of divaricatic acid isolated from the lichen Evernia mesomorpha against methicillin-resistant Staphylococcus aureus. Molecules 2018;23:3068. https://doi.org/10.3390/molecules23123068

11. Nayak SK, Bajpai R, Upreti DK, Satapathy KB. Diversity of lichen flora of Odisha, India a review. Study Fungi 2016;1:114-24. https://doi.org/10.5943/sif/1/1/11

12. Pradhan S, Upreti DK, Satapathy KB. Diversity, distribution and abundance of lichen in similipal biosphere reserve, Odisha. J Exp Biol Agric Sci 2021;9:781-90. https://doi.org/10.18006/2021.9(6).781.790

13. Pradhan S, Upreti DK, Satapathy KB. Lichen diversity on Shorea robusta Gaertn. in the transitional zone of similipal biosphere reserve. Ambient Sci 2021;8:74-8. https://doi.org/10.21276/ambi.2021.08.2.aa05

14. Pradhan S, Satapathy KB. A study on diversity of lichen in the northwest transitional zone of Mayurbhanj district of Odisha, India. Indian J Nat Sci 2020;10:26985-90.

15. Sahoo B, Dash S, Parida S, Sahu JK, Rath B. Antimicrobial activity of the lichens Parmotrema andium and Dirinaria applanata. J App Biol Biotechnol 2021;9:93-7.

16. Thangjam NM, Kumar A, Laldingliani T, Upreti DK. New distributional records of lichens for the state of Mizoram, IndoBurma region of India. Trends Sci 2022;19:1-14. https://doi.org/10.48048/tis.2022.2573

17. Kekuda TP, Dhanya R, Dhatri R, Sunita CM, Onkarappa R, Vinayaka KS. Radical scavenging, antimicrobial and insecticidal efficacy of Parmotrema cristiferum and Dirinaria applanata. Sci Technol Arts Res J 2015;4:95-102. https://doi.org/10.4314/star.v4i1.16

18. Afieroho OE, Noundou X, Krause RW, Isaacs M, Olley L, Hoppe HC, et al. An antiplasmodial depside from a Nigerian lichen Dirinaria picta, epiphytic on the oil palm Elaeis guineense. Rev Bol Quím 2018;35:31-9.

19. Ahmed E, Elkhateeb W, Taie H, Rateb M, Fayad W. Biological capacity and chemical composition of secondary metabolites from representatives' Japanese lichens. J Appl Pharm Sci 2017;7:98-103. https://doi.org/10.7324/JAPS.2017.70113

20. Tatipamula VB, Vedula GS. In vitro anti-inflammatory and cytotoxicity studies of two mangrove associated lichens, Dirinaria consimilis and Ramalina leiodea extracts. Hyg J Drugs Med 2018;10:16-26. https://doi.org/10.15254/H.J.D.Med.10.2018.174

21. Ahmed S, Roy S, Tayung K, Yasmin F. Assessment of antibacterial potential of different solvent extract of foliose lichens against human pathogenic bacteria. J Appl Pharm Sci 2020;10:72-6.

22. Shendge AK, Panja S, Mandal N. Tropical lichen, Dirinaria consimilis, induces ROS-mediated activation of MAPKs and triggers caspase cascade mediated apoptosis in brain and cervical cancer cells. Mol Cell Biochem 2021;476:2181-92. https://doi.org/10.1007/s11010-021-04087-4

23. Dawoud TM, Alharbi NS, Theruvinthalakal AM, Thekkangil A, Kadaikunnan S, Khaled JM, et al. Characterization and antifungal activity of the yellow pigment produced by a Bacillus sp. DBS4 isolated from the lichen Dirinaria agealita. Saudi J Biol Sci 2020;27:1403-11. https://doi.org/10.1016/j.sjbs.2019.11.031

24. Huynh BL, Le DH, Takenaka Y, Tanahashi T, Nguyen KP. New phenolic compounds from the lichen Parmotrema praesorediosum (Nyl.) Hale (Parmeliaceae). Magn Reson Chem 2016;54:81-7. https://doi.org/10.1002/mrc.4316

25. Anupama TV, Sheela KB, Suman KT. Elemental composition of edible lichen Parmotrema tinctorum (Nyl.) Hale (Parmeliaceae) from Wayanad. Progress Hortic 2020;52:88-92. https://doi.org/10.5958/2249-5258.2020.00013.5

26. Kusmoro J, Noer IS, Jatnika MF, Permatasari RE, Partasasmita R. Lichen diversity in geothermal area of Kamojang, Bandung, West Java, Indonesia and its potential for medicines and dyes. Biodivers J Biol Divers 2018;19:2335-43. https://doi.org/10.13057/biodiv/d190643

27. Saha S, Pal A, Paul S. A review on pharmacological, anti-oxidant activities and phytochemical constituents of a novel lichen Parmotrema species. J Biol Active Prod Nat 2021;11:190-203. https://doi.org/10.1080/22311866.2021.1916596

28. Huynh BL, Duong TH, Do TM, Pinnock TG, Pratt LM, Yamamoto S, et al. New γ-lactone carboxylic acids from the lichen Parmotrema praesorediosum (Nyl.) hale, parmeliaceae. Records Nat Prod 2016;10:332.

29. Huynh BL, Pham NK, Nguyen TP. Vinapraesorediosic acids D and E from the lichen Parmotrema praesorediosum (Nyl.) Hale. Phytochem Lett 2020;41:61-4. https://doi.org/10.1016/j.phytol.2020.11.001

30. Huynh BL, Bui VM, Nguyen KP, Pham NK, Nguyen TP. Three new diphenyl ethers from the lichen Parmotrema praesorediosum (Nyl.) Hale (Parmeliaceae). Nat Prod Res 2022;36:1934-40. https://doi.org/10.1080/14786419.2020.1837818

31. Mohammadi M, Zambare V, Malek L, Gottardo C, Suntres Z, Christopher L. Lichenochemicals: Extraction, purification, characterization, and application as potential anticancer agents. Expert Opin Drug Discov 2020;15:575-601. https://doi.org/10.1080/17460441.2020.1730325

32. Ahmed KS, Ahmed SS, Thangakumar A, Krishnaveni R. Therapeutic effect of Parmotrema tinctorum against complete Freund's adjuvantinduced arthritis in rats and identification of novel Isophthalic ester derivative. Biomed Pharmacother 2019;112:1-11. https://doi.org/10.1016/j.biopha.2019.108646

33. Alqahtani MA, Al Othman MR, Mohammed AE. Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Sci Rep 2020;10:1-7. https://doi.org/10.1038/s41598-020-73683-z

34. Khandel P, Shahi S, Kanwar L, Yadaw RK, Soni DK. Biochemical profiling of microbes inhibiting silver nanoparticles using symbiotic organisms. Int J Nano Dimens 2018;9:273-85.

35. Awasthi DD. Compendium of the macrolichens from India, Nepal and Sri Lanka. Dehradun: Bishen Singh Mahendra Pal Singh; 2007.

36. Widodo H, Sismindari S, Asmara W, Rohman A. Antioxidant activity, total phenolic and flavonoid contents of selected medicinal plants used for liver diseases and its classification with chemometrics. J App Pharm Sci 2019;9:99-105.
https://doi.org/10.7324/JAPS.2019.90614

37. Rafi M, Febriany S, Wulandari P, Suparto IH, Ridwan T, Rahayu S, et al. Total phenolics, flavonoids, and anthocyanin contents of six Vireya rhododendron from Indonesia and evaluation of their antioxidant activities. J App Pharm Sci 2018;8:49-54. https://doi.org/10.7324/JAPS.2018.8908

38. Sembiring EN, Elya B, Sauriasari R. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) Roxb. Pharmacogn J 2018;10:123-7. https://doi.org/10.5530/pj.2018.1.22

39. Shaikh JR, Patil MK. Qualitative tests for preliminary phytochemical screening: An overview. Int J Chem Stud 2020;8:603-8. https://doi.org/10.22271/chemi.2020.v8.i2i.8834

40. Ariffin MM, Khong HY, Nyokat N, Liew GM, Hamzah AS, Boonpisuttinant K. In vitro antibacterial, antioxidant, and cytotoxicity evaluations of Musa paradisiaca cv. Sekaki florets from Sarawak, Malaysia. MPC J Appl Pharm Sci 2021;11:91-9.

41. Missoun F, de los Ríos AP, Ortiz-Martínez V, Salar-García MJ, Hernández-Fernández J, Hernández-Fernández FJ. Discovering low toxicity ionic liquids for Saccharomyces cerevisiae by using the agar well diffusion test. Processes 2020;8:1-18. https://doi.org/10.3390/pr8091163

42. Ahamed AA, Rasheed MU, Noorani KP, Reehana N, SanthoshkumarS, Imran YM, et al. In vitro antibacterial activity of MGDG-palmitoyl from Oscillatoria acuminata NTAPC05 against extended-spectrum β-lactamase producers. J Antibiot 2017;70:754-62. https://doi.org/10.1038/ja.2017.40

43. Vora J, Srivastava A, Modi H. Antibacterial and antioxidant strategies for acne treatment through plant extracts. Inform Med Unlocked 2018;13:128-32. https://doi.org/10.1016/j.imu.2017.10.005

44. Sethi S, Joshi A, Arora B, Bhowmik A, Sharma RR, Kumar P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur Food Res Technol 2020;246:591-8. https://doi.org/10.1007/s00217-020-03432-z

45. Meher RK, Pragyandipta P, Pedapati RK, Nagireddy PK, Kantevari S, Nayek AK, et al. Rational design of novel N?alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents. Chem Biol Drug Des 2021;98:445-65. https://doi.org/10.1111/cbdd.13901

46. Meher RK, Nagireddy PK, Pragyandipta P, Kantevari S, Singh SK, Kumar V, et al. In silico design of novel tubulin binding 9-arylimino derivatives of noscapine, their chemical synthesis and cellular activity as potent anticancer agents against breast cancer. J Biomol Struct Dyn 2021;39:1-12. https://doi.org/10.1080/07391102.2021.1889668

47. Meher RK, Pragyandipta P, Reddy PK, Pedaparti R, Kantevari S, Naik PK, et al. Development of 1,3-diynyl derivatives of noscapine as potent tubulin binding anticancer agents for the management of breast cancer. J Biomol Struct Dyn 2021;39:1-18. https://doi.org/10.1080/07391102.2021.1982008

48. Licá IC, Soares AM, de Mesquita LS, Malik S. Biological properties and pharmacological potential of plant exudates. Food Res Int 2018;105:1039-53.
https://doi.org/10.1016/j.foodres.2017.11.051

49. Ashokkumar K, Murugan M, Dhanya MK, Warkentin TD. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton] a critical review. J Ethnopharmacol 2020;246:112244. https://doi.org/10.1016/j.jep.2019.112244

50. Costa DC, Costa HS, Albuquerque TG, Ramos F, Castilho MC, Sanches-Silva A. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci Technol 2015;45:336-54. https://doi.org/10.1016/j.tifs.2015.06.009

51. Soto-Hernández M, Tenango MP, García-Mateos R. Phenolic Compounds: Natural Sources, Importance and Applications. Norderstedt. BoD-Books on Demand; 2017. https://doi.org/10.5772/67213

52. Albuquerque BR, Heleno SA, Oliveira MB, Barros L, Ferreira IC. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct 2021;12:14-29. https://doi.org/10.1039/D0FO02324H

53. Tanase C, Co?arc? S, Muntean DL. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019;24:1182. https://doi.org/10.3390/molecules24061182

54. Cosme P, Rodríguez AB, Espino J, Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential healthpromoting applications. Antioxidants (Basel) 2020;9:1263. https://doi.org/10.3390/antiox9121263

55. Murugesan P. Phytochemical analysis and antimicrobial activity of edible lichen. J Drug Deliv Ther 2020;10:102-4. https://doi.org/10.22270/jddt.v10i2-s.4016

56. Moghimipour E, Handali S. Saponin: Properties, methods of evaluation and applications. Ann Res Rev Biol 2015;207-20. https://doi.org/10.9734/ARRB/2015/11674

57. Sharma P, Tyagi A, Bhansali P, Pareek S, Singh V, Ilyas A, et al. Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food Chem Toxicol 2021;1-14. https://doi.org/10.1016/j.fct.2021.112075

58. Nadaraia NS, Amiranashvili LS, Merlani M, Kakhabrishvili ML, Barbakadze NN, Geronikaki A, et al. Novel antimicrobial agents' discovery among the steroid derivatives. Steroids 2019;144:52-65. https://doi.org/10.1016/j.steroids.2019.02.012

59. Omar F, Tareq AM, Alqahtani AM, Dhama K, Sayeed MA, EmranTB, et al. Plant-based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules 2021;26:1-26. https://doi.org/10.3390/molecules26082297

60. Ullah F, Iqbal N, Ayaz M, Sadiq A, Ullah I, Ahmad S, et al. DPPH, ABTS free radical scavenging, antibacterial and phytochemical evaluation of crude methanolic extract and subsequent fractions of Chenopodium botrys aerial parts. Pakistan J Pharm Sci 2017;30:761-6.

61. Bowyer MC, Van Vuong Q, Van Altena IA, Scarlett CJ. Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Ind Crops Prod 2015;67:192-200. https://doi.org/10.1016/j.indcrop.2015.01.051

62. Truong DH, Nguyen DH, Ta NT, Bui AV, Do TH, Nguyen HC. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual 2019;2019:8178294. https://doi.org/10.1155/2019/8178294

63. Kumari P, Khatkar BS, Duhan A. Aonla phytochemicals: Extraction, identification and quantification. J Food Sci Technol 2019;56:2278-86. https://doi.org/10.1007/s13197-019-03716-7

64. El?Hadary AE, Taha M. Pomegranate peel methanolic?extract improves the shelf?life of edible?oils under accelerated oxidation conditions. Food Sci Nutr 2020;8:1798-811. https://doi.org/10.1002/fsn3.1391

65. El-Garawani I, Emam M, Elkhateeb W, El-Seedi H, Khalifa S, Oshiba S, et al. In vitro antigenotoxic, antihelminthic and antioxidant potentials based on the extracted metabolites from lichen, Candelariella vitellina. Pharmaceutics 2020;12:1-22. https://doi.org/10.3390/pharmaceutics12050477

66. Vivek MN, Kambar Y, Manasa M, Kekuda TR, Vinayaka KS. Radical scavenging and antibacterial activity of three Parmotrema species from Western Ghats of Karnataka, India. J App Pharm Sci 2014;4:86.

67. Rajan VP, Gunasekaran S, Ramanathan S, Murugaiyah V, Samsudin MW, Din LB. Biological activities of four Parmotrema species of Malaysian origin and their chemical constituents. J Appl Pharm Sci 2016;6:36-43. https://doi.org/10.7324/JAPS.2016.60806

68. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019;8:96. https://doi.org/10.3390/plants8040096

69. Amri FS, Hossain MA. Comparison of total phenols, flavonoids and antioxidant potential of local and imported ripe bananas. Egypt J Basic Appl Sci 2018;5:245-51. https://doi.org/10.1016/j.ejbas.2018.09.002

70. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531

71. Ji M, Gong X, Li X, Wang C, Li M. Advanced research on the antioxidant activity and mechanism of polyphenols from Hippophae species a review. Molecules 2020;25:917. https://doi.org/10.3390/molecules25040917

72. Behiry SI, Okla MK, Alamri SA, El-Hefny M, Salem MZ, Alaraidh IA, et al. Antifungal and antibacterial activities of Musa paradisiaca L. peel extract: HPLC analysis of phenolic and flavonoid contents. Processes 2019;7:215. https://doi.org/10.3390/pr7040215

73. Dhawan D, Gupta J. Research article comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves. Int J Biol Chem 2017;11:17-22. https://doi.org/10.3923/ijbc.2017.17.22

74. Mai-Prochnow A, Clauson M, Hong J, Murphy AB. Gram positive and Gram-negative bacteria differ in their sensitivity to cold plasma. Sci Rep 2016;6:1-11. https://doi.org/10.1038/srep38610

75. Papuc C, Goran GV, Predescu CN, Nicorescu V, Stefan G. Plant polyphenols as antioxidant and antibacterial agents for shelf?life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comp Rev Food Sci Food Saf 2017;16:1243-68. https://doi.org/10.1111/1541-4337.12298

76. Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol 2019;10:911. https://doi.org/10.3389/fmicb.2019.00911

77. Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 2019;18:241-72. https://doi.org/10.1007/s11101-018-9591-z

78. Ganesan A, Purushothaman DK, Muralitharan U, Subbaiyan R. Metabolite profiling and in vitro assessment of antimicrobial and antioxidant activities of lichen Ramalina inflata. Int Res J Pharm 2017;7:132-8. https://doi.org/10.7897/2230-8407.0712159

79. Plaza CM, Salazar CP, Plaza RE, Vizcaya M, Rodriguez-Castillo G, Medina-Ramirez G. In vitro analysis of antibacterial and antifungal potential of lichen species of Everniastrumcf vexans, Parmotrema blanquetianum, Parmotrema reticulatum and Peltigera laciniata. MOJ Drug Des Dev Ther 2018;2:125-34. https://doi.org/10.15406/mojddt.2018.02.00038

80. Azman AA, Nadiah N, Rosandy AR, Alwi A, Kamal N, Mohd R. Antimicrobial activity and LC-MS data comparison from lichen Parmotrema praesorediosum in Bangi, Selangor, Malaysia. Sains Malays 2021;50:383-93. https://doi.org/10.17576/jsm-2021-5002-10

81. World Health Organization. Global Cancer Observatory. Geneva: International Agency for Research on Cancer, World Health Organization; 2020. Available from: http://gco.iarc.fr. [Last accessed on 2021 Sep 05].

82. Londoño-Castañeda PA, Buril ML, Rego-Cunha IP, Silva NH, Honda NK, Pereira EC, et al. Lichens used in the traditional medicine by the Pankararu indigenous community, Pernambuco-Brazil. Glob J Sci Front Res 2017;17:15-22.

83. Tatipamula VB, Nguyen HT, Kukavica B. Beneficial effects of liposomal formulations of lichen substances: A review. Curr Drug Del 2022;19:252-9. https://doi.org/10.2174/1567201818666210713110719

84. Shendge AK, Panja S, Basu T, Mandal N. A tropical lichen, Dirinaria consimilis selectively induces apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Anticancer Agents Med Chem 2020;20:1173-87. https://doi.org/10.2174/1871520620666200318095410

Article Metrics

3 Absract views 0 PDF Downloads 3 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required
Similar Articles