Rhizoctonia solani is a plant pathogenic fungus infecting a wide range of hosts including economically important crops such as wheat, rice, and vegetables, etc. and leads to a loss in agricultural production. Various chemicals and bio fungicides are used to control R. solani. Understanding of gene expression and its function during host interaction will be useful to identify potential targets in R.solani for its effective control. In recent studies, non-coding RNAs (ncRNAs) are found to have a role in regulating cellular functions. In the current study, we report 16 ncRNAs from R. solani identified using raw transcriptomic data from three different bio projects reported in NCBI’s sequence read archive database. The ncRNAs from F001 to ncRNA F0011 was expressed with fragments per kilo million reads (FPKM) values ranging from 100 to 20,000. Out of these 11 ncRNAs, 7 ncRNAs has the same intron splicing sites in all three bio projects. The ncRNA F0012 to ncRNA F0016 was found to be expressed approximately 10–80 FPKM and are present in all three bio projects, out of these five ncRNAs, three are found to have similar splicing sites in all three bio projects. The high expression levels of the ncRNAs and their presence in the genome confirmed by different datasets point to the fact that they might have a major function in the organism and should be studied further to characterize it functionally and the current study might serve as the first step to achieve it.
Durairaj B, Prabhudas SK, Rengarajan J, Sellamuthu I. Identification of noval non-coding RNAs in Rhizoctonia solani through mining of transcriptomic data. J Appl Biol Biotech, 2021;9(S1):7–12.
1.Ogoshi A. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annu Rev Phytopathol. 1987;25(1):125-43. https://doi.org/10.1146/annurev.py.25.090187.001013 | |
2. Farrokhi-Nejad R, Cromey MG, Moosawi-Jorf SA. Determination of the anastomosis grouping and virulence of Rhizoctonia spp. associated with potato tubers grown in Lincoln, New Zealand. Pak J Biol Sci 2007;10(21):3786-93. https://doi.org/10.3923/pjbs.2007.3786.3793 | |
3. Priyatmojo A, Escopalao VE, Tangonan NG, Pascual CB, Suga H, Kageyama K, et al. Characterization of a new subgroup of Rhizoctonia solani anastomosis group 1 (AG-1-ID), causal agent of a necrotic leaf spot on coffee. Phytopathology 2001;91(11):1054-61. https://doi.org/10.1094/PHYTO.2001.91.11.1054 | |
4. Godoy-Lutz G, Kuninaga S, Steadman JR, Powers K. Phylogenetic analysis of Rhizoctonia solani subgroups associated with web blight symptoms on common bean based on ITS-5.8S rDNA. J Gen Plant Pathol 2008;74(1):32-40. https://doi.org/10.1007/s10327-007-0060-6 | |
5. Khodayari M, Safaie N, Shamsbakhsh M. Genetic diversity of Iranian AG1-IA isolates of Rhizoctonia solani, the cause of rice sheath blight, using morphological and molecular markers. J Phytopathol 2009;157(11-12):708-14. | |
6. Tan W, Zhang W, Ou Z, Li C, Zhou G, Wang Z, et al. Analyses of the temporal development and yield losses due to sheath blight of rice (Rhizoctonia solani AG1.1a). Agric Sci China 2007;6(9):1074-81. https://doi.org/10.1016/S1671-2927(07)60149-7 | |
7. Nadarajah K, Razali NM, Cheah BH, Sahruna NS, Tathode M, Bankar K. Draft genome sequence of Rhizoctonia solani anastomosis group 1 subgroup 1A strain 1802/KB isolated from rice. Genome Announc 2009;5(12):1-2. | |
8. Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, et al. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 2013;4:1410-24. https://doi.org/10.1038/ncomms2427 | |
9. Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 2002;420(6915):563-73. Available via http://www.informatics.jax.org/mgihome/ (Accessed 11 September 2020) | |
10. Dhingra S. Role of non-coding RNAs in fungal pathogenesis and antifungal drug responses. Curr Clin Microbiol Rep 2020;7:133-41. https://doi.org/10.1007/s40588-020-00151-7 | |
11. Huang CY, Wang H, Hu P, Hamby R, Jin H. Small RNAs-big players in plant-microbe interactions. Cell Host Microbe 2019;26(2):173-182. https://doi.org/10.1016/j.chom.2019.07.021 | |
12. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009;458(7235):223-7. Available via https://www.nature.com/articles/nature07672 (Accessed 11 September 2020) | |
13. Bánfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 2012;22(9):1646-57. Available via http://pmc/articles/ PMC3431482/?report=abstract (Accessed 11 September 2020) | |
14. Yamashita A, Shichino Y, Yamamoto M. The long non-coding RNA world in yeasts. Biochim Biophys Acta Gene Regul Mech 2016;1859:147-54. https://doi.org/10.1016/j.bbagrm.2015.08.003 | |
15. Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell. 2008;32(5):685-95. https://doi.org/10.1016/j.molcel.2008.09.027 | |
16. Alcid EA, Tsukiyama T. ATP-dependent chromatin remodeling shapes the long noncoding RNA landscape. Genes Dev 2014;28(21):2348- 60. Available via http://pmc/articles/PMC4215180/?report=abstract (Accessed 11 September 2020) | |
17. Ghosh S, Kanwar P, Jha G. Identification of candidate pathogenicity determinants of Rhizoctonia solani AG1-IA, which causes sheath blight disease in rice. Curr Genet 2018;64(3):729-40; doi:10.1007/ s00294-017-0791-7 | |
18. Copley TR, Duggavathi R, Jabaji S. The transcriptional landscape of Rhizoctonia solani AG1-IA during infection of soybean as defined by RNA-seq. PLoS One 2017;12(9):1-22. https://doi.org/10.1371/journal.pone.0184095 | |
19. Xia Y, Fei B, He J, Zhou M, Zhang D, Pan L, et al. Transcriptome analysis reveals the host selection fitness mechanisms of the Rhizoctonia solani AG1IA pathogen. Sci Rep 2017;7(1):1-16; doi:10.1038/s41598-017-10804-1. https://doi.org/10.1038/s41598-017-10804-1 | |
20. Andrews S. FASTQC. A quality control tool for high throughput sequence data. 21. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20. | |
22. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105-11. https://doi.org/10.1093/bioinformatics/btp120 | |
23. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012;7(3):562- 78. https://doi.org/10.1038/nprot.2012.016 | |
24. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26(6):841-2. https://doi.org/10.1093/bioinformatics/btq033 | |
25. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10:1-9. https://doi.org/10.1186/1471-2105-10-421 | |
26. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 2017;45(W1):W12-6. | |
27. Guo JC, Fang SS, Wu Y, Zhang JH, Chen Y, Liu J, et al. CNIT: a fast and accurate web tool for identifying protein-coding and long noncoding transcripts based on intrinsic sequence composition. Nucleic Acids Res 2019;47(W1):W516-22. | |
28. Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 2014;15(1):311. https://doi.org/10.1186/1471-2105-15-311 | |
29. Li S, Yu X, Lei N, Cheng Z, Zhao P, He Y, et al. Genome-wide identification and functional prediction of cold and/or droughtresponsive lncRNAs in cassava. Sci Rep 2017;7(March):1-15. | |
30. Carlevaro-Fita J, Lanzós A, Feuerbach L. Cancer LncRNA census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. Commun Biol 2020;3:56. https://doi.org/10.1038/s42003-019-0741-7 | |
31. Feng Q, Li Y, Zhao ZX, Wang WM. Contribution of small RNA pathway to interactions of rice with pathogens and insect pests. Rice 2021;14(1):1-5. | |
32. Sacco LD, Baldassarre A, Masotti A. Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 2012;13(1):97-114. https://doi.org/10.3390/ijms13010097 | |
33. Nitsche A, Rose D, Fasold M, Reiche K, Stadler PF. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA 2015;21(5):801-12. https://doi.org/10.1261/rna.046342.114 | |
34. Heo JB, Lee YS. Molecular functions of long noncoding transcripts in plants. J Plant Biol 2015;58:361-5. https://doi.org/10.1007/s12374-015-0476-z | |
35. Wang LL, Jin JJ, Li LH, Qu SH. Long non-coding RNAs responsive to blast fungus infection in rice. Rice 2020;13:77. https://doi.org/10.1186/s12284-020-00437-w | |
36. SongL, Fang Y, Chen L, Wang J, Chen X. Role of non-coding RNAs in plant immunity. Plant Commun 2021;2(3):100180. https://doi.org/10.1016/j.xplc.2021.100180 |
Year
Month