Generation mean analysis of quality protein maize (Zea mays L.) using a six-parameter genetic model for grain yield and biochemical characters in sub-humid climatic conditions of Odisha
This study was conducted on quality protein maize crosses, CML138 × CML145 and CML334 × CML330, to assess genetic effects and the nature of gene action governing morphological and biochemical traits. The significant results from all four scaling tests and the six-parameter model highlighted the roles of additive (d), dominance (h), and epistatic effects (i, j, and l) in the inheritance of morphological, biochemical, and grain yield-related traits. Dominance variance (h) had a greater influence than variance (d), with duplicate epistatic interactions observed for most traits, except plant height in CML138 × CML145 (h) = 23.944, (l) = 22.656, and catalase activity in CML334 × CML330 (h) = 0.083, (l) = 0.121, which exhibited complementary gene action. Traits exhibiting duplicate gene action, such as grain yield per plant in CML138 × CML145 (h) = 1757.704, (l) = −2088.704 and plant height in CML334 × CML330 (h) = 108.636, (l) = −162.936, exhibited significant dominance (h) and dominance × dominance (l) interactions. Dominance variance and duplicate epistasis played a crucial role in the inheritance of these traits. To enhance these characteristics, selection in successive populations following a biparental mating approach would be beneficial.
Teja KV, Raju KK, Roy A, Nanda S, Sil P, Swapnil, Rajendra V, Rout S, Kumar R, Lone AA. Generation mean analysis of quality protein maize (Zea mays L.) using a six-parameter genetic model for grain yield and biochemical characters in sub-humid climatic conditions of Odisha. J Appl Biol Biotech 2025. Article in Press. http://doi.org/10.7324/JABB.2026.249256
1. Vidadala R, Kumar V, Rout S, Sil P, Teja V, Rahimi M. Genetic analysis of quality protein maize (QPM): A review. Cereal Res Commun. 2024;53:1-9. https://doi.org/10.1007/s42976-024-00552-0
2. Ayyanna B, Bhat JS, Rakshith P, Kariyannanavar P. Heterosis and combining ability analysis in newly developed inbred lines of maize (Zea mays L.). Pharma Innov J. 2023;12(11):1356-62.
3. Attri H, Dey T, Singh B, Kour A. Genetic estimation of grain yield and its attributes in three wheat (Triticum aestivum L.) crosses using a six-parameter model. J Genet. 2021;100:47. https://doi.org/10.1007/s12041-021-01298-y
4. Premachandra GS, Saneoka H, Fujita K, Ogata S. Cell membrane stability and leaf water relations as affected by phosphorus nutrition under water stress in maize. Soil Sci Plant Nutr. 1990;36(4):661-6. https://doi.org/10.1080/00380768.1990.10416803
5. Sadasivam S, Manickam A. Carbohydrates. In: Sadasivam S, Manickam A, editors. Methods in Biochemistry. New Delhi: New Age International Pvt. Ltd.; 1996. p. 11-2.
6. Raj GS, Marker S, Scaria S, Ansari SM. Quantitative studies on heterosis and inbreeding depression in quality protein maize for terminal heat tolerance. J Pharmacogn Phytochem. 2020;9(2):784-8.
7. Pujar M, Govindaraj M, Gangaprasad S, Kanatti A, Gowda TH, Kumar BM. Generation mean analysis reveals the predominant gene effects for grain iron and zinc contents in pearl millet. Front Plant Sci. 2022;12:693680. https://doi.org/10.3389/fpls.2021.693680
8. Mather K. Biometrical Genetics: The study of Continuous Variation. London: Metuen and Co. Limited; 1949.
9. Hayman BI. The separation of epistasis from additive and dominance variation in generation means. Heredity. 1958;12:371-90. https://doi.org/10.1007/BF01984430
10. Mather K, Jinks JL. Biometrical Genetics. London: Chapman and Hall; 1971. https://doi.org/10.1007/978-1-4899-3404-8
11. Robinson HF, Comstock RE, Harvey PH. Estimates of heritability and degree of dominance in corn. Agron J. 1949;41(6):253-9. https://doi.org/10.2134/agronj1949.00021962004100060001x
12. Sharma P, Singh N, Kamboj MC, Kumar R. Understanding the genetics of important quality traits in maize (Zea mays L.) using diverse germplasm by generation mean analysis. Agric Assoc Text Chem Crit Rev. 2023;11(4):1-2. https://doi.org/10.58321/aatccreview.2023.11.04.01
13. Elmyhun M, Abate E, Abate A, Teklewold A, Menkir A. Genetic analysis of tolerance to combined drought and heat stress in tropical maize. PLoS One. 2024;19(6):e0302272. https://doi.org/10.1371/journal.pone.0302272
14. Shankar M, Singh R, Shahi JP, Devesh P, Singh P. Generation mean analysis for yield and drought related traits in maize (Zea mays L.). Curr J Appl Sci Technol. 2022;41(22):30-45. https://doi.org/10.9734/cjast/2022/v41i2231758
15. Haq MI, Ajmal S, Kamal N, Khanum S, Siddique M, Kiani MZ. Generation mean analysis for grain yield in maize. Generations. 2013;1(13):11-38.
16. Dorri P, Khorasani SK, Shahrokhi M. Generation means analysis: A case study of variance components in KSC 500 generations of maize (Zea mays L.). Int Res J Appl Basic Sci. 2014;8(2):194-200.
17. Murugesan T, Dharmalingam K, Venkatesan T, Jegadeesan S, Palaniappan J. Generation mean analysis for seed yield and its contributing traits in the inter-varietal cross of blackgram (Vigna mungo (L.) Hepper). Agric Sci Dig. 2024;44(4):720-4. https://doi.org/10.18805/ag.D-5358
18. Sharma P, Kamboj MC, Singh N, Kumar R, Naveen K. Generation mean analysis in maize (Zea mays L.) for yields and yield attributing traits. Indian J Agric Sci. 2022;92(1):110-7. https://doi.org/10.56093/ijas.v92i1.120854
19. Rahangdale PZ, Kamdi SR, Patil SR, Deotale RD, Pandit MB, Upadhyay DY, et al. Generation mean analysis in maize (Zea mays L.). Soils Crops. 2019;29(1):126.
20. Nagarajan D, Thiyagarajan K, Murugan E. Inheritance studies through generation mean analysis for quantitative traits in soybean (Glycine max (L.) Merrill.). J Appl Nat Sci. 2022;14(SI):111-8. https://doi.org/10.31018/jans.v14iSI.3576
21. Chiangmai PN, Yodmingkhwan P, Nilprapruck P, Aekatasanawan C, Kanjanamaneesathian M. Generation means analysis of phytic acid and inorganic phosphorus contents in corn (Zea mays L.). Maydica. 2013;58:243-53.
22. Moharramnejad S, Valizadeh M, Emaratpardaz J. Generation mean analysis in maize (Zea mays L.) under drought stress. Fresenius Environ Bull. 2018;27(4):2518-22.
23. Li W, Pan K, Liu W, Xiao W, Ni S, Shi P, et al. Monitoring maize canopy chlorophyll content throughout the growth stages based on UAV MS and RGB feature fusion. Agriculture. 2024;14(8):1265. https://doi.org/10.3390/agriculture14081265
24. Solangi AH, Lakho SK, Jatoi WA, Solangi N, Solangi A, Syed Q, Syed MH. Heterosis and combining ability for phenological yield and fiber traits of cotton (Gossypium hirsutum L.) genotypes. Plant Sci. Today. 2024;11(3): 213-29. https://doi.org/10.14719/pst.3098.
25. Jayalakshmi V, Reddy LG. Generation mean analysis for certain quantitative characters in groundnut. Agric Sci Dig. 2024;23(4):255-8.
26. Abid M, Ali S, Qi LK. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci Rep. 2018;8:4615. https://doi.org/10.1038/s41598-018-21441-7
27. Patil KH, Mahajan RC, Nagargoje VT. Generation mean analysis in maize (Zea mays L.). J Oilseeds Res. 2020;37:120-8. https://doi.org/10.56739/jor.v37ispecialissue.139527
28. Dinesh HB, Viswanatha KP, Lohithaswa H, Pavan R, Singh P. Genetic association estimates using third and fourth-degree statistics in early segregating generations of cowpea. Int J Curr Microbiol Appl Sci. 2018;7(1):894-9. https://doi.org/10.20546/ijcmas.2018.701.105
29. Rahimi Jahangirlou M, Akbari GA, Alahdadi I. Phenotypic traits, grain yield and yield components of maize cultivars under combinations of management practices in semi-arid conditions of Iran. Int J Plant Prod. 2021;15:459-71. https://doi.org/10.1007/s42106-021-00151-7
Year
Month