Genome editing: A new age technology for sustainable agriculture and developing abiotic stress resilience in crops
The technological breakthrough has been a major driving force for promoting agriculture development and production. Increasing world population and climate change are big threats to food security and agriculture sustainability. In recent years, genome editing (GE) has emerged as the most promising technology, which offers potential solutions for crop improvement and achieving agriculture sustainability. Compared to sophisticate and time-consuming conventional plant breeding approaches, advent of GE tools and their potential use in crop improvement, provided new insight into plant breeding for trait improvement. Genetic variations are the primary mean of crop improvement in agriculture system, which can be achieved through many ways including mutations breeding, crossbreeding, transgenic technology, and GE. In the present scenario, where transgenic technology involves the transfer of exogenous gene of desired trait to elite crop variety, but very limited crops are available for commercial use due to comprehensive stringent government regulations on genetically modified organisms and its public acceptance. In contrast, GE offers precise site specific modification (targeted mutagenesis) in the genome to get relevant change in elite crop leading to the production of improved verities in short duration. The present article focuses on some of the key GE tools developed for targeted mutagenesis in desired gene, i.e., meganucleases, zinc finger nucleases, transcription activator like effectors nuclease and clustered regularly interspaced short palindromic repeat/Cas9 technology, along with their applications in crop improvement for developing abiotic stress resilience mainly for drought and salinity in different crops such as wheat, rice, maize, and chickpea. Therefore, the development of GE tools holds a promise to play a pivotal role in contemporary crop breeding system and meeting agriculture sustainability through crop improvement.
Saxena R, Kumar M, Tomar RS, Yadav N, Kaur N, Puri P, Yadav A, Negi R, Yadav AN. Genome editing: A new age technology for sustainable agriculture and developing abiotic stress resilience in crops. J App Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.232158
1. Shahzad A, Ullah S, Dar AA, Sardar MF, Mehmood T, Tufail MA, et al. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ Sci Pollut Res 2021;28:14211-32. https://doi.org/10.1007/s11356-021-12649-8 | |
2. Verma A, Deepti S. Abiotic stress and crop improvement: Current scenario. Adv Plants Agric Res 2016;4:345-6. https://doi.org/10.15406/apar.2016.04.00149 | |
3. FAO. Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture, Trends and Challenges. Rome: FAO, FAO; 2017. | |
4. Springmann M, Clark M, Mason-D'Croz D, Wiebe K, Bodirsky BL, Lassaletta L, et al. Options for keeping the food system within environmental limits. Nature 2018;562:519-25. https://doi.org/10.1038/s41586-018-0594-0 | |
5. Zaidi SS, Mahas A, Vanderschuren H, Mahfouz MM. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 2020;21:289. https://doi.org/10.1186/s13059-020-02204-y | |
6. Muthamilarasan M, Singh NK, Prasad M. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. Adv Genet 2019;103:1-38. https://doi.org/10.1016/bs.adgen.2019.01.001 | |
7. Verma P, Saxena R, Tomar RS. Rhizobacteria: A promising tool for drought tolerance in crop plants. Int J Pahrm Bio Sci 2016; Spl Ed:116-25. | |
8. Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Ann Rev Plant Biol 2019;70:667-97. https://doi.org/10.1146/annurev-arplant-050718-100049 | |
9. Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, et al. Genetically modified crops: Current status and future prospects. Planta 2020;251:91. https://doi.org/10.1007/s00425-020-03372-8 | |
10. Khan N, Ray RL, Sargani GR, Ihtisham M, Khayyam M, Ismail S. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability 2021;13:4883. https://doi.org/10.3390/su13094883 | |
11. Kumar A, Subbaiah M, Roy J, Phogat S, Kaushik M, Saini MR, et al. Strategies to utilize genome editing for increasing nitrogen use efficiency in crops. Nucleus 2024;67:205-25. https://doi.org/10.1007/s13237-024-00475-5 | |
12. Lassoued R, Macall DM, Hesseln H, Phillips PW, Smyth SJ. Benefits of genome-edited crops: Expert opinion. Transgenic Res 2019;28:247-56. https://doi.org/10.1007/s11248-019-00118-5 | |
13. Lassoued R, Phillips PW, Smyth SJ, Hesseln H. Estimating the cost of regulating genome edited crops: Expert judgment and overconfidence. GM Crops Food 2019;10:44-62. https://doi.org/10.1080/21645698.2019.1612689 | |
14. Georges F, Ray H. Genome editing of crops: A renewed opportunity for food security. GM Crops Food 2017;8:1-12. https://doi.org/10.1080/21645698.2016.1270489 | |
15. Negi R, Sharma B, Parastesh F, Kaur S, Khan SS, Kour D, et al.Microbial consortia mediated regulation of plant defense: A promising tool for sustaining crops protection. Physiol Mol Plant Pathol 2024;134:102393. https://doi.org/10.1016/j.pmpp.2024.102393 | |
16. Saxena R, Kumar M, Tomar RS. Plant responses and resilience towards drought and salinity stress. Plant Arch 2019;19:50-8. | |
17. Sharma N, Tomar R. Association of nonenzymatic antioxidants in plant holobiont. In: Singh HB, Vaishnav A, Sayyed R, editors. Antioxidants in Plant-Microbe Interaction. Singapore: Springer; 2021. p. 59-73. https://doi.org/10.1007/978-981-16-1350-0_4 | |
18. Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, et al. Enhancing climate change resilience in agricultural crops. Curr Biol 2023;33:R1246-61. https://doi.org/10.1016/j.cub.2023.10.028 | |
19. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 2003;6:410-7. https://doi.org/10.1016/S1369-5266(03)00092-X | |
20. Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, et al. Genome editing in plants: Exploration of technological advancements and challenges. Cells 2019;8:1386. https://doi.org/10.3390/cells8111386 | |
21. Wada N, Ueta R, Osakabe Y, Osakabe K. Precision genome editing in plants: State-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 2020;20:234. https://doi.org/10.1186/s12870-020-02385-5 | |
22. Anwar A, Kim JK. Transgenic breeding approaches for improving abiotic stress tolerance: Recent progress and future perspectives. Int J Mol Sci 2020;21:2695. https://doi.org/10.3390/ijms21082695 | |
23. Kaur N, Sharma S, Hasanuzzaman M, Pati PK. Genome editing: A promising approach for achieving abiotic stress tolerance in plants. Int J Genomics 2022;2022:5547231. https://doi.org/10.1155/2022/5547231 | |
24. Wang H, Wang H, Shao H, Tang X. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 2016;7:67. https://doi.org/10.3389/fpls.2016.00067 | |
25. Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F. Next-generation breeding strategies for climate-ready crops. Front Plant Sci 2021;12:620420. https://doi.org/10.3389/fpls.2021.620420 | |
26. Bearth A, Otten CD, Cohen AS. Consumers' perceptions and acceptance of genome editing in agriculture: Insights from the United States of America and Switzerland. Food Res Int 2024;178:113982. https://doi.org/10.1016/j.foodres.2024.113982 | |
27. Hundleby P, Harwood W. Regulatory constraints and differences of genome-edited crops around the globe. In: Wani SH, Hensel G,editors. Genome Editing: Current Technology Advances and Applications for Crop Improvement. Cham: Springer International Publishing; 2022. p. 319-41. https://doi.org/10.1007/978-3-031-08072-2_17 | |
28. Pixley KV, Falck-Zepeda JB, Paarlberg RL, Phillips PW, Slamet-Loedin IH, Dhugga KS, et al. Genome-edited crops for improved food security of smallholder farmers. Nat Genet 2022;54:364-7. https://doi.org/10.1038/s41588-022-01046-7 | |
29. Ahmad A, Hoffman NE, Jones MG, Zhang B. Frontiers in global regulatory landscape of CRISPR-edited plants. Front Plant Sci 2024;15:1367698. https://doi.org/10.3389/fpls.2024.1367698 | |
30. Vora Z, Pandya J, Sangh C, Vaikuntapu PR. The evolving landscape of global regulations on genome-edited crops. J Plant Biochem Biotechnol 2023;32:831-45. https://doi.org/10.1007/s13562-023-00863-z | |
31. Zaidi SS, Vanderschuren H, Qaim M, Mahfouz MM, Kohli A, Mansoor S, et al. New plant breeding technologies for food security. Science 2019;363:1390-1. https://doi.org/10.1126/science.aav6316 | |
32. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38:824-44. https://doi.org/10.1038/s41587-020-0561-9 | |
33. Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 2018;13:2944-63. https://doi.org/10.1038/s41596-018-0072-z | |
34. Malzahn A, Lowder L, Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci 2017;7:21. https://doi.org/10.1186/s13578-017-0148-4 | |
35. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 2019;20:490-507. https://doi.org/10.1038/s41580-019-0131-5 | |
36. Kumar M, Prusty MR, Pandey MK, Singh PK, Bohra A, Guo B, et al.Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Front Plant Sci 2023;14:1157678. https://doi.org/10.3389/fpls.2023.1157678 | |
37. Sedeek KE, Mahas A, Mahfouz M. Plant genome engineering for targeted improvement of crop traits. Front Plant Sci 2019;10:114. https://doi.org/10.3389/fpls.2019.00114 | |
38. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, et al.Meganucleases and other tools for targeted genome engineering: Perspectives and challenges for gene therapy. Curr Gene Ther 2011;11:11-27. https://doi.org/10.2174/156652311794520111 | |
39. Danilo B, Montes É, Archambeau H, Lodé M, Rousseau-Gueutin M,Chèvre AM, et al. I-SceI and customized meganucleases-mediated genome editing in tomato and oilseed rape. Transgenic Res 2022;31:87-105. https://doi.org/10.1007/s11248-021-00287-2 | |
40. Pâques F, Duchateau P. Meganucleases and DNA double-strand break-induced recombination: Perspectives for gene therapy. Curr Gene Ther 2007;7:49-66. https://doi.org/10.2174/156652307779940216 | |
41. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 2010;61:176-87. https://doi.org/10.1111/j.1365-313X.2009.04041.x | |
42. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 1996;93:1156-60. https://doi.org/10.1073/pnas.93.3.1156 | |
43. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010;11:636-46. https://doi.org/10.1038/nrg2842 | |
44. Petolino JF. Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 2015;51:1-8. https://doi.org/10.1007/s11627-015-9663-3 | |
45. Bonawitz ND, Ainley WM, Itaya A, Chennareddy SR, Cicak T, Effinger K, et al. Zinc finger nuclease?mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non?homologous end joining. Plant Biotechnol J 2019;17:750-61. https://doi.org/10.1111/pbi.13012 | |
46. Matres JM, Hilscher J, Datta A, Armario-Nájera V, Baysal C, He W, et al. Genome editing in cereal crops: An overview. Transgenic Res 2021;30:461-98. https://doi.org/10.1007/s11248-021-00259-6 | |
47. Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP, Emani C, et al. Genome editing in plants: An overview of tools and applications. Int J Agron 2017;2017:7315351. https://doi.org/10.1155/2017/7315351 | |
48. Gupta PK, Balyan HS, Gautam T. SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects. Mol Plant Pathol 2021;22:1014-26. https://doi.org/10.1111/mpp.13075 | |
49. Becker S, Boch J. TALE and TALEN genome editing technologies. Gene Genome Edit 2021;2:100007. https://doi.org/10.1016/j.ggedit.2021.100007 | |
50. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009;326:1501. https://doi.org/10.1126/science.1178817 | |
51. Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Ann Rev Phytopathol 2010;48:419-36. https://doi.org/10.1146/annurev-phyto-080508-081936 | |
52. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A,et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010;186:757-61. https://doi.org/10.1534/genetics.110.120717 | |
53. Joung JK, Sander JD. TALENs: A widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14:49-55. https://doi.org/10.1038/nrm3486 | |
54. Char SN, Unger?Wallace E, Frame B, Briggs SA, Main M, Spalding MH, et al. Heritable site?specific mutagenesis using TALEN s in maize. Plant Biotechnol J 2015;13:1002-10. https://doi.org/10.1111/pbi.12344 | |
55. Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, et al. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol 2016;16:225. https://doi.org/10.1186/s12870-016-0906-1 | |
56. Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, ?ermák T, et al. CRISPR/cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnol J 2018;16:1125-37. https://doi.org/10.1111/pbi.12857 | |
57. Lor VS, Starker CG, Voytas DF, Weiss D, Olszewski NE. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol 2014;166:1288-91. https://doi.org/10.1104/pp.114.247593 | |
58. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 2014;32:947-51. https://doi.org/10.1038/nbt.2969 | |
59. Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the Os BADH 2 gene using TALEN technology. Plant Biotechnol J 2015;13:791-800. https://doi.org/10.1111/pbi.12312 | |
60. Li T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 2012;30:390-2. https://doi.org/10.1038/nbt.2199 | |
61. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011;39:e82. https://doi.org/10.1093/nar/gkr218 | |
62. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F. A transcription activator-like effector toolbox for genome engineering. Nat Protoc 2012;7:171-92. https://doi.org/10.1038/nprot.2011.431 | |
63. Osakabe Y, Osakabe K. Genome editing with engineered nucleases in plants. Plant Cell Physiol 2015;56:389-400. https://doi.org/10.1093/pcp/pcu170 | |
64. Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, et al. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 2016;14:169-76. https://doi.org/10.1111/pbi.12370 | |
65. Luo S, Li J, Stoddard TJ, Baltes NJ, Demorest ZL, Clasen BM, et al. Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 2015;8:1425-7. https://doi.org/10.1016/j.molp.2015.05.012 | |
66. Wada N, Osakabe K, Osakabe Y. Genome editing in plants. Gene Genome Ed 2022;3-4:100020. https://doi.org/10.1016/j.ggedit.2022.100020 | |
67. Minkenberg B, Wheatley M, Yang Y. CRISPR/Cas9-enabled multiplex genome editing and its application. Prog Mol Biol Transl Sci 2017;149:111-32. https://doi.org/10.1016/bs.pmbts.2017.05.003 | |
68. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Nat Acad Sci 2012;109:E2579-86. https://doi.org/10.1073/pnas.1208507109 | |
69. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21. https://doi.org/10.1126/science.1225829 | |
70. Nascimento FS, Rocha AJ, Soares JM, Mascarenhas MS, Ferreira MS, Morais Lino LS, et al. Gene editing for plant resistance to abiotic factors: A systematic review. Plants (Basel) 2023;12:305. https://doi.org/10.3390/plants12020305 | |
71. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 2013;31:686-8. https://doi.org/10.1038/nbt.2650 | |
72. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 2013;31:688-91. https://doi.org/10.1038/nbt.2654 | |
73. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 2015;32:76-84. https://doi.org/10.1016/j.copbio.2014.11.007 | |
74. Jung YJ, Nogoy FM, Lee SK, Cho YG, Kang KK. Application of ZFN for site directed mutagenesis of rice SSIVa gene. Biotechnol Bioproc Eng 2018;23:108-15. https://doi.org/10.1007/s12257-017-0420-9 | |
75. Chennakesavulu K, Singh H, Trivedi PK, Jain M, Yadav SR. State-of-the-art in CRISPR technology and engineering drought, salinity, and thermo-tolerant crop plants. Plant Cell Rep 2022;41(3):815-831. https://doi.org/10.1007/s00299-021-02681-w | |
76. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 2019;39:47. https://doi.org/10.1007/s11032-019-0954-y | |
77. Alamillo JM, López CM, Rivas FJ, Torralbo F, Bulut M, Alseekh S. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots: A perfect match for gene functional analysis and crop improvement. Curr Opin Biotechnol 2023;79:102876. https://doi.org/10.1016/j.copbio.2022.102876 | |
78. Tran MT, Doan DT, Kim J, Song YJ, Sung YW, Das S, et al. CRISPR/ Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato. Plant Cell Rep 2021;40:999-1011. https://doi.org/10.1007/s00299-020-02622-z | |
79. Zhang M, Cao Y, Wang Z, Wang Z, Shi J, Liang X, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 2018;217:1161-76. https://doi.org/10.1111/nph.14882 | |
80. Wang T, Xun H, Wang W, Ding X, Tian H, Hussain S, et al. Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front Plant Sci 2021;12:779598. https://doi.org/10.3389/fpls.2021.779598 | |
81. Muluneh MG. Impact of climate change on biodiversity and food security: A global perspective-A review article. Agric Food Secur 2021;10:1-25. https://doi.org/10.1186/s40066-021-00318-5 | |
82. Adeyinka OS, Tabassum B, Koloko BL, Ogungbe IV. Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. Planta 2023;257:78. https://doi.org/10.1007/s00425-023-04110-6 | |
83. Santosh Kumar V, Verma RK, Yadav SK, Yadav P, Watts A, Rao M, et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 2020;26:1099-110. https://doi.org/10.1007/s12298-020-00819-w | |
84. Roca Paixão JF, Gillet FX, Ribeiro TP, Bournaud C, Lourenço- Tessutti IT, Noriega DD, et al. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyltransferase. Sci Rep 2019;9:8080. https://doi.org/10.1038/s41598-019-44571-y | |
85. Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, et al. Four a rabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ 2015;38:35-49. https://doi.org/10.1111/pce.12351 | |
86. Barbosa EG, Leite JP, Marin SR, Marinho JP, de Fátima Corrêa Carvalho J, Fuganti-Pagliarini R, et al. Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Rep 2013;31:719-30. https://doi.org/10.1007/s11105-012-0541-4 | |
87. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 2015;6:84. https://doi.org/10.3389/fpls.2015.00084 | |
88. Ilyas M, Ahad A, Gul A. Genome engineering in wheat against drought stress. In: Gul A, editor. Targeted Genome Engineering via CRISPR/Cas9 in Plants. Netherlands: Elsevier, Academic Press; 2024. p. 209-232. https://doi.org/10.1016/B978-0-443-26614-0.00019-9 | |
89. Kim D, Alptekin B, Budak H. CRISPR/Cas9 genome editing in wheat. Funct Integr Genomics 2018;18:31-41. https://doi.org/10.1007/s10142-017-0572-x | |
90. Bouzroud S, Gasparini K, Hu G, Barbosa MA, Rosa BL, Fahr M, et al. Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes 2020;11:272. https://doi.org/10.3390/genes11030272 | |
91. Abdallah NA, Elsharawy H, Abulela HA, Thilmony R, Abdelhadi AA, Elarabi NI. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops Food 2022;16(1):1-17. https://doi.org/10.1080/21645698.2022.2120313 | |
92. Zhu D, Chang Y, Pei T, Zhang X, Liu L, Li Y, et al. MAPK?like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J 2020;102:747-60. https://doi.org/10.1111/tpj.14660 | |
93. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, et al. ARGOS 8 variants generated by CRISPR?Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 2017;15:207-16. https://doi.org/10.1111/pbi.12603 | |
94. Singh C, Kumar R, Sehgal H, Bhati S, Singhal T, Gayacharan, et al. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Front Genet 2023;14:1085024. https://doi.org/10.3389/fgene.2023.1085024 | |
95. Liu L, Zhang J, Xu J, Li Y, Guo L, Wang Z, et al. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Sci 2020;301:110683. https://doi.org/10.1016/j.plantsci.2020.110683 | |
96. Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, et al. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 2017;65:8674-82. https://doi.org/10.1021/acs.jafc.7b02745 | |
97. Li R, Liu C, Zhao R, Wang L, Chen L, Yu W, et al. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol 2019;19:38. https://doi.org/10.1186/s12870-018-1627-4 | |
98. Debbarma J, Sarki YN, Saikia B, Boruah HP, Singha DL, Chikkaputtaiah C. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR-Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: A review. Mol Biotechnol 2019;61:153-72. https://doi.org/10.1007/s12033-018-0144-x | |
99. Chen S, Zhang N, Zhou G, Hussain S, Ahmed S, Tian H, et al. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biol 2021;21:137. https://doi.org/10.1186/s12870-021-02907-9 | |
100. Kim ST, Choi M, Bae SJ, Kim JS. The functional association of ACQOS/VICTR with salt stress resistance in Arabidopsis thaliana was confirmed by CRISPR-mediated mutagenesis. Int J Mol Sci 2021;22:11389. https://doi.org/10.3390/ijms222111389 | |
101. Zheng M, Lin J, Liu X, Chu W, Li J, Gao Y, et al. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol 2021;186:1951-69. https://doi.org/10.1093/plphys/kiab187 | |
102. Badhan S, Ball AS, Mantri N. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci 2021;22:396. https://doi.org/10.3390/ijms22010396 | |
103. Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L, et al. Roles of the Brassica napus DELLA protein BnaA6. RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10. ABF2. Front Plant Sci 2020;11:577. https://doi.org/10.3389/fpls.2020.00577 | |
104. Du YT, Zhao MJ, Wang CT, Gao Y, Wang YX, Liu YW, et al. Identification and characterization of GmMYB118 responses to drought and salt stress. BMC Plant Biol 2018;18:320. https://doi.org/10.1186/s12870-018-1551-7 | |
105. Chinnusamy V, Schepler-Luu V, Mangrauthia SK, Ramesh SV. Genome editing in plants: A tool for precision breeding and functional genomics. J Plant Biochem Biotechnol 2023;32:657-60. https://doi.org/10.1007/s13562-023-00867-9 | |
106. Shanmugam S, Boyett VA, Khodakovskaya M. Enhancement of drought tolerance in rice by silencing of the OsSYT-5 gene. PLoS One 2021;16:e0258171. https://doi.org/10.1371/journal.pone.0258171 | |
107. Zeng Y, Wen J, Zhao W, Wang Q, Huang W. Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR-Cas9 system. Front Plant Sci 2020;10:1663. https://doi.org/10.3389/fpls.2019.01663 | |
108. Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol 2015;33:445-9. https://doi.org/10.1038/nbt.3188 |
Year
Month