Rhizobium as a potential biofertilizer and its quality control analysis for sustainable agriculture
Biofertilizer can be defined as bioformulation containing living organisms. They are known to play a similar role as chemical fertilizers resulting in increased soil fertility and crop production. The application of chemical fertilizer causes massive harm to the environment thus focus of various stakeholders is on alternatives and biofertilizer is one of them. The quality of biofertilizer is most important for its end-user and has to be monitored at various stages. One such biofertilizer is Rhizobium of the Rhizobiaceae family which infects the root nodules of leguminous plants and reduces atmospheric nitrogen to ammonia to make it available for the plants. The shelf-life studies of Rhizobium containing biofertilizer are important to track the quality of formulated biofertilizer. There are several methods to find the shelf life but the most suitable are the serial dilution and plating method. The viability of cells within the biofertilizer can be determined by the colony-forming unit count of the plate at different time intervals. The quality checks on Rhizobium biofertilizer include pre-culture test, broth test, and peat test. This review highlights the application and benefits of Rhizobium as a biofertilizer.
Bahuguna V, Matura R, Farswan AS, Naqvi SS, Sharma N, Chaudhary M. Rhizobium as a potential biofertilizer and its quality control analysis for sustainable agriculture. J Appl Biol Biotech. 2025. Online First. http://doi.org/10.7324/JABB.2025.197428
1. Chaudhary P, Singh S, Chaudhary A, Sharma A, Kumar G. Overview of biofertilizers in crop production and stress management for sustainable agriculture. Front Plant Sci 2022;13:930340. https://doi.org/10.3389/fpls.2022.930340 | |
2. Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: an eco-friendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci 2021;3:100094. https://doi.org/10.1016/j.crmicr.2021.100094 | |
3. Glaser B, Lehr VI. Biochar effects on phosphorous availability in agricultural soils: a meta-analysis. Sci Rep 2019;9(1):9338. https://doi.org/10.1038/s41598-019-45693-z | |
4. Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR et al. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 2021;245:126690. https://doi.org/10.1016/j.micres.2020.126690 | |
5. Harman G, Khadka R, Doni F, Uphoff N. Benefits to plant health and productivity from enhancing plant microbial symbionts. Front Plant Sci 2021;11:610065. https://doi.org/10.3389/fpls.2020.610065 | |
6. Murgese P, Santamaria P, Leoni B, Crecchio C. Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in Barattiere (Cucumis melo L.). J Soil Sci Plant Nutr 2020;20:784-93. https://doi.org/10.1007/s42729-019-00165-1 | |
7. Fasusi OA, Cruz C, Babalola OO. Agricultural sustainability: microbial biofertilizers in rhizosphere management. Agriculture 2021;11(2):163. https://doi.org/10.3390/agriculture11020163 | |
8. Chaudhary A, Chaudhary P, Upadhyay A, Kumar A, Rani A. Effect of gypsum on plant growth promoting rhizobacteria. Environ Ecol 2022;39:1248-56. | |
9. Agri U, Chaudhary P, Sharma A, Kukreti B. Physiological response of maize plants and its rhizospheric microbiome under the influence of potential bioinoculants and nanochitosan. Plant Soil 2022;474:451-68. https://doi.org/10.1007/s11104-022-05351-2 | |
10. Sehrawat A, Sindhu SS. Potential of biocontrol agents in plant disease control for improving food safety. Def Life Sci J 2019;4(4):220-5. https://doi.org/10.14429/dlsj.4.14966 | |
11. Bhattacharjee R, Dey U. Biofertilizer, a way towards organic agriculture: a review. Afr J Microbial Res 2014;8(24):2332-42. https://doi.org/10.5897/AJMR2013.6374 | |
12. Glick BR, Gamalero E. Recent developments in the study of plant microbiomes. Microorganisms 2021;9(7):1533. https://doi.org/10.3390/microorganisms9071533 | |
13. Sehrawat A, Sindhu SS, Glick BR. Hydrogen cyanide production by soil bacteria: biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere 2022;32(1):15-38. https://doi.org/10.1016/S1002-0160(21)60058-9 | |
14. Praveen KV, Singh A. Realizing the potential of a low-cost technology to enhance crop yields: evidence from a meta-analysis of biofertilizers in India. Agric Econ Res Rev 2019;32:77-91. https://doi.org/10.5958/0974-0279.2019.00018.1 | |
15. Shravani K, Triveni S, Latha PC, Damodara CK. Evaluation of shelf life and quality of carrier and liquid based biofertilizers. Int J Microbiol Res 2019;11(6):1598-601. | |
16. Santhosh GP. Formulation and shelf life of liquid biofertilizer inoculants using cell protectants. Int J Res Biosci Agric Technol 2015;2(7):243-7. | |
17. Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B. Biofertilizers in organic agriculture. J Phytol 2010;2(10):42-54. | |
18. Patel N, Patel Y, Mankad A. Bio Fertilizer: a promising tool for sustainable farming. Int J Innov Res Sci Eng Technol 2014;3(9):15838-42. https://doi.org/10.15680/IJIRSET.2014.0309007 | |
19. Bhavya K, Reddy RS, Triveni S. Comparative study on quality parameters and viability of carrier and liquid biofertilizers. Int J Pure Appl Biosci 2017;5(4):1702-9. https://doi.org/10.18782/2320-7051.5706 | |
20. Mazid M, Khan TA. Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 2014;3(3):10-23. https://doi.org/10.24102/ijafr.v3i3.132 | |
21. Yadav AK, Chandra K. Mass production and quality control of microbial inoculants. Proc Indian Natl Sci Acad 2014;80(2):483-9. https://doi.org/10.16943/ptinsa/2014/v80i2/5 | |
22. O'Callaghan M, Ballard RA, Wright D. Soil microbial inoculants for sustainable agriculture: limitations and opportunities. Soil Use Manage 2022;38:1340-69. https://doi.org/10.1111/sum.12811 | |
23. Raychaudhuri S, Yadav AK, Raychaudhuri M. Changing face of Rhizobial technology. Biofertilizer Newsletter 2007;15(1):3-10. | |
24. Amat D, Thakur JK, Mandal A, Sahu A, Reddy KKK. Production and utilization of legume inoculants (Rhizobium) in India. Harit Dhara 2020;3(2):28-31. | |
25. Brahmaprakash GP, Sahu PK. Biofertilizers for sustainability. J Indian Inst Sci 2012;92(1):37-62. | |
26. Lekatompessy S, Nurjanah L, Sukiman H. Study of cross inoculation of Rhizobium tropici with other potential soil microbes on their ability to support the growth of Soybean. IOP Conf Series Earth Environ Sci 2019;308:012041. https://doi.org/10.1088/1755-1315/308/1/012041 | |
27. Poonia S. Rhizobium: a natural biofertilizer. Int J Eng Mgmt Res 2011;1(1):36-8. | |
28. Nushair AM, Saha AK, Mandal A, Rahman MA, Mohanta MK, Hasan MA, et al. "Rhizobium sp. CCNWYC119: a single strain highly effective as biofertilizer for three different peas (Pigeon pea, sweet pea, and Chick pea). Legume Res 2018;41(5):771-7. https://doi.org/10.18805/LR-389 | |
29. Garcha S, Kansal R, Gosal SK. Molasses growth medium for production of Rhizobium sp. based biofertilizer. Indian J Biochem Biophys 2019;56:378-83. | |
30. Sehrawat A, Yadav A, Anand RC, Kukreja K, Suneja S. Enhancement of shelf life of liquid biofertilizer containing Rhizobium sp. infecting mungbean (Vigna radiata L.). Legume Res 2017;40(4):684-90. https://doi.org/10.18805/lr.v0i0.7648 | |
31. Thirumal G, Reddy RS, Triveni S, Damodarachari K, Bhavya K. Evaluate the shelf life of rhizobium carrier based biofertilizer stored at different temperatures at different intervals. Int J Curr Microbiol Appl Sci 2017;6(7):753-9. https://doi.org/10.20546/ijcmas.2017.607.094 | |
32. Gomare KS, Mese M, Shetkar Y. Isolation of rhizobium and cost-effective production of biofertilizer. Ind J Life Sci 2013;2(2):49-53. | |
33. Singh AK, Deepuraj, Masih H, Kumar Y, Peter JK, Mishra SK, et al. Optimization of production parameters and evaluation of shelf life of Rhizobium biofertilizers. Elixir Bio Tech 2014;67:21787-95. | |
34. Abdallah HA, Elsalahi RH, Mohamed SE. Quality attributes of co-inoculants based on rhizobia and phosphate solubilizing bacteria under different storage conditions. J Agric Vet Sci 2019;12(10):1-7. | |
35. Osman AG, Rugheim AME, Elsoni EM. Effects of biofertilization on nodulation, nitrogen and phosphorous content and yield of pigeon pea (Cajanus Cajan). Adv Environ Biol 2011;5(9):2742-9. | |
36. Sangeetha D, Stella D. Survival of plant growth promoting bacterial inoculants in different carrier materials. Int J Pharm Biol Arch 2012;3(1):170-8. | |
37. Jain D, Sharma SK, Meena RH, Kollah B, Mohanty SR. Liquid and carrier based Rhizobium biofertilizer technology for Southern Rajasthan of India, MPUAT, Udaipur, India, pp. 1-11, 2022. | |
38. Bahuguna V, Bhatt G, Maikhuri R, Chandra D. Nitrogen fixation through genetic engineering: a future systemic approach of nitrogen fixation. In: Nath M, Bhatt D, Bhargava P, Choudhary DK, (eds). Microbial metatranscriptomics belowground, Springer, Singapore, pp. 109-22, 2021. https://doi.org/10.1007/978-981-15-9758-9_5 | |
39. Lindstrom K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol 2020;13(5):1314-35. https://doi.org/10.1111/1751-7915.13517 | |
40. Suh JS, Jiarong P, Toan PV. Quality control of biofertilizers. Biofertilizer manual. FNCA Biofertilizer Project Group. Forum for Nuclear Cooperation in Asia (FNCA). Japan Atomic Industrial Forum (JAIF), Tokyo, Japan, pp.112-9, 2006. | |
41. Brar SK, Sarma SJ, Chaabouni E. Shelf-life of biofertilizers: an accord between formulations and genetics. J Biofertil Biopestici 2012;3:e109. | |
42. Deaker R, Mijajlovic G, Casteriano A. Estimating the most probable number of bacteria in multistrain biofertilizer inoculants using a multiple-tube fermentation test. In: Kennedy IR, Choudhury ATMA, Kecskes ML, Rose MT (eds). Efficient nutrient use in rice production in Vietnam achieved using inoculant biofertilisers. ACIAR Proceedings, Hanoi, Vietnam, pp. 108-16, 2008. | |
43. Renganathan P, Andrade-Bustamante G, Martínez-Ruiz FE, Puente EO. Microbial diversity and functional profiles of three commercial biofertilizers and impacts on the bacterial communities of avocado's soil rhizosphere. Cienc Tecnol Agropecuaria 2024;25(1):e3251. https://doi.org/10.21930/rcta.vol25_num1_art:3251 | |
44. Lee SK, Lur HS, Lo KJ, Cheng KC, Chuang CC, Tang SJ, et al. Evaluation of the effects of different liquid inoculant formulations on the survival and plant growth promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl Microbiol Biotechnol 2016;100(18):7977-87. https://doi.org/10.1007/s00253-016-7582-9 | |
45. Sahu PK, Gupta A, Singh M, Mehrotra P, Brahmaprakash GP. Bioformulation and fluid bed drying: a new approach towards an improved biofertilizer formulation. In: Sengar R, Singh A, (eds). Eco-friendly agro-biological techniques for enhancing crop productivity, Springer, Singapore, pp. 47-62, 2018. https://doi.org/10.1007/978-981-10-6934-5_3 | |
46. Matura R, Bahuguna V, Bhandari M, Thapa I, Jain S. Assessment of shelf life and quality of biofertilizers using tricalcium phosphate as an anticaking agent and aluminium silicate as the inert carrier. Ind J Agric Res 2021;57(6):784-7; doi:10.18805/IJARe.A-5650 https://doi.org/10.18805/IJARe.A-5650 | |
47. Mahanty T, Bhattacharjee S, Goswami M, Bhattacharya P, Das B, Ghosh A, et al. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res Int 2017;24(4):3315-35. https://doi.org/10.1007/s11356-016-8104-0 | |
48. Lawal TE. Babalola OO. Relevance of biofertilizers to agriculture. J Hum Ecol 2014;47(1):35-43. https://doi.org/10.1080/09709274.2014.11906737 | |
49. Safikhan S, Mohammadi M, Reza CM. Effects of seed inoculation by rhizobium strains on chlorophyll content and protein percentage in common bean cultivars (Phaseolus vulgaris L.). Int J Biosci 2013;3(3):1-8. https://doi.org/10.12692/ijb/3.3.1-8 | |
50. Sammauria R, Kumawat S, Kumawat P, Singh J, Jatwa TK. Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch Microbiol 2020;202(4):677-93. https://doi.org/10.1007/s00203-019-01795-w | |
51. Nosheen S, Ajmal I, Song Y. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability 2021;13(4):1868. https://doi.org/10.3390/su13041868 | |
52. Mabrouk Y, Hemissi I, Salem IB, Mejri S, Saidi M, Belhadj O. Potential of rhizobia in improving nitrogen fixation and yields of legumes. In: Rigobelo EC (ed). Symbiosis. IntechOpen, London, UK, 2018; doi:10.5772/intechopen.73495 https://doi.org/10.5772/intechopen.73495 | |
53. Baset Mia MA, Shamsuddin ZH. Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 2010;9(37):6001-9. | |
54. Chen J. The combined use of chemical and organic fertilizers and/or biofertilizers for crop growth and soil fertility. International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use. Land Development Department, Bangkok, Thailand, pp 1-11, 2006. | |
55. Biswas PK, Bhowmick B, Bhowmick MK. Effect of liquid and carrier-based Rhizobium inoculants on growth, nodulation and seed yield of urdbean. J Crop Weed 2007;3(2):7-9. | |
56. Rubio-Canalejas A, Celador-Lera L, Cruz-González X, Menéndez E, Rivas R. Rhizobium as potential biofertilizer of Eruca sativa. In: Gonzalez-Andreas F, James E, (eds). Biological nitrogen fixation and beneficial plant-microbe interaction. Springer, Cham, Swizterland, pp 213-20, 2016. https://doi.org/10.1007/978-3-319-32528-6_18 | |
57. FloresFélix JD, Menéndez E, Rivera LP, MarcosGarcía M, MartínezHidalgo P, Mateos PF, et al. Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 2013;176(6):876-82. https://doi.org/10.1002/jpln.201300116 | |
58. Mnalku A, Demise N, Muleta D, Abera Y, Mitiku G. Manual for rhizobial inoculant development and management. Ethiopian Institute of Agricultural Research, Addis Ababa, 2020, doi:10.13140/RG.2.2.28906.67521 | |
59. Tilak KV, Nandanavanam R, Manoharachari C. Synergistic effects of plant-growth-promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 2006;57(1):67-71. https://doi.org/10.1111/j.1365-2389.2006.00771.x | |
60. Khanna V, Sharma P. Potential for enhancing lentil (Lens culinaris) productivity by co-inoculation with PSB, plant growth-promoting rhizobacteria and Rhizobium. Indian J Agri Sci 2011;81(10):932. | |
61. Wani PA, sKhan MS, Zaidi A. Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 2007;170(2):283-7. https://doi.org/10.1002/jpln.200620602 |
Year
Month