The influence of light-emitting diodes and sulfur–silica on the growth, yield, and biochemical content in lettuce Influence of LEDs and sulfur–silica on lettuce

Slameto Danil Eka Fahrudin Dimvy Rusefani Asetya Muhamad Wahyu Saputra Nak-Young Baek Cheol-Woo Shin Dong-Kyu Lee Woo-Won Kang   

Open Access   

Published:  Feb 07, 2025

DOI: 10.7324/JABB.2025.174158
Abstract

Soilless cultivation with artificial lighting has the potential to augment vegetable crop production, particularly lettuce, but yields are lower compared to natural sunlight, especially in monochromatic light technologies. Research suggests that color blending with light-emitting diodes (LEDs) can enhance production, yet many overlook the importance of nutrient management. The use of sulfur–silica fertilizer, known for enhancing plant growth in low-light stress conditions, supports this assertion. The study employed a randomized complete block design with two factors, each repeated four times. The treatments included three LED light colors: white LED (L1), blue LED (L2), and red LED (L3). Two fertilizer treatments were applied: absence of sulfur–silica fertilizer (P1) and presence of sulfur–silica fertilizer (P2). The study finds that optimal growth of lettuce plants is achieved through the utilization of both red and white LED lights, with red LED yielding the highest fresh leaf weight. The red LED treatments outperform other LED colors in terms of protein, carbohydrate, and total energy production. Introducing sulfur–silica fertilizer can promote superior lettuce growth, albeit at the cost of reduced fresh leaf weight. The application of sulfur–silica fertilizer leads to decreased protein and carbohydrate levels but enhances the overall energy content of the lettuce.


Keyword:     Lettuce Light-emitting diodes Sulfur–silica Low-light stress


Citation:

Slameto, Fahrudin DE, Asetya DR, Saputra MW, Baek N-Y, Shin C-W, Lee D-K, Kang W-W. The influence of light-emitting diodes and sulfur–silica on the growth, yield, and biochemical content in lettuce Influence of LEDs and sulfur–silica on lettuce. J App Biol Biotech. 2025. http://doi.org/10.7324/JABB.2025.174158

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Directorate of Statistical Dissemination Indonesia. Directorate of Food Crops, Horticulture, and Estate Crops Statistics. Horticultural Statistics. Jakarta: Directorate of Statistical Dissemination Indonesia; 2020.

2. Pavlou GC, Ehaliotis CD, Kavvadias VA. Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci Horticult. 2007;111:319–25.

3. Katan M. Nitrate in foods: Harmful or healthy? Am J Clin Nutr. 2009;90(1):11–2. https://doi.org/10.3945/ajcn.2009.28014

4. Bennie J, Davies TW, Cruse D, Gaston KJ. Ecological effects of artificial light at night on wild plants. J Ecol. 2016;104(3):611–20. https://doi.org/10.1111/1365-2745.12551

5. D’Souza C, Yuk HG, Khoo GH, Zhou W. Application of light?emitting diodes in food production, postharvest preservation, and microbiological food safety. Comp Rev Food Sci Food Safety. 2015;14(6):719–40. https://doi.org/10.1111/1541-4337.12155

6. Carter GA, Knapp AK. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. Am J Bot. 2001;88(4):677–84. https://doi.org/10.2307/2657068

7. Massa GD, Wheeler RM, Morrow RC, Levine HG. Growth chambers on the International Space Station for large plants. Acta Horticult. 2016;1134:215–22. https://doi.org/10.17660/actahortic.2016.1134.29

8. Stein EW. The transformative environmental effects large-scale indoor farming may have on air, water, and soil. Air Soil Water Res. 2021;14:1–8. https://doi.org/10.1177/1178622121995819

9. Nouaze JC, Kim JH, Jeon GR, Kim JH. Monitoring of indoor farming of lettuce leaves for 16 hours using electrical impedance spectroscopy (EIS) and double-shell model (DSM). Sensors. 2022;22(24):9671. https://doi.org/10.3390/s22249671

10. Naznin M, Lefsrud M, Gravel V, Azad M. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants. 2019;8(4):93. https://doi.org/10.3390/plants8040093

11. Zhang X, He D, Niu G, Yan Z, Song J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int J Agricult Biol Eng. 2018;11(2):33–40. https://doi.org/10.25165/j.ijabe.20181102.3240

12. Han T, Vaganov V, Cao S, Li Q, Ling L, Cheng X, et al. Improving “color rendering” of LED lighting for the growth of lettuce. Sci Rep. 2017;7(1):45944. https://doi.org/10.1038/srep45944

13. Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Horticult. 2013;150:86–91. https://doi.org/10.1016/j.scienta.2012.10.002

14. Sharma A, Hazarika M, Heisnam P, Pandey H, Devadas VS, Wangsu M, et al. Factors affecting production, nutrient translocation mechanisms, and LED emitted light in growth of microgreen plants in soilless culture. ACS Agricult Sci Technol. 2023;3(9):701–19.

https://doi.org/10.1021/acsagscitech.3c00260

15. Marschner H. Mineral nutrition of higher plants. New York (NY): Academic Press; 1995.

16. Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider JH, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332(6033):1097–100. https://doi.org/10.1126/science.1203980

17. DatnoffLE, Snyder GH, Korndörfer GH (eds). Silicon in plants: Facts vs. concepts. In: Silicon in Agriculture. Amsterdam: Elsevier; 2001. p. 1–16.

18. Chang Y, Cui H, Wang Y, Li C, Wang J, Jin M, Luo Y, Li Y, Wang Z. Silicon spraying enhances wheat stem resistance to lodging under light stress. Agronomy (Basel, Switzerland). 2023;13(10):2565. https://doi.org/10.3390/agronomy13102565

19. Wang B, Chu C, Wei H, Zhang L, Ahmad Z, Wu S, et al. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ Pollut. 2020;267:115411. https://doi.org/10.1016/j.envpol.2020.115411

20. Yuniarti A, Nurmala T, Solihin E, Syahfitri N. Pengaruh dosis pupuk silika organik terhadap silika tanah dan tanaman, pertumbuhan dan hasil hanjeli (Coix lacryma-jobi L.). J Agosains dan Teknol. 2018;2(2):81–94. https://doi.org/10.24853/jat.2.2.81%E2%80%9394

21. Sivanesan I, Park SW. The role of silicon in plant tissue culture. Front Plant Sci. 2014;5:571. https://doi.org/10.3389/fpls.2014.00571

22. AOAC [Association of Official Analytical Chemyst]. Official Method of Analysis of The Association of Official Analytical of Chemists. Arlington: The Association of Official Analytical Chemyst, Inc; 2005.

23. Seif M, Aliniaeifard S, Arab M, Mehrjerdi MZ, Shomali A, Fanourakis D, et al. Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemum. Funct Plant Biol FPB. 2021;48(5):515–28. https://doi.org/10.1071/fp20280

24. Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Horticult. 2013;150:86–91. https://doi.org/10.1016/j.scienta.2012.10.002

25. Xu M, Hu T, Poethig, RS. Low light intensity delays vegetative phase change. Plant Physiol. 2021;187(3):1177–88. https://doi.org/10.1093/plphys/kiab243

26. Meesters Y, Winthorst WH, Duijzer WB, Hommes V. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in sub-syndromal seasonal affective disorder. BMC Psychiatry. 2016;16(1):27. https://doi.org/10.1186/ s12888-016-0729-5

27. Ahmed HA, Yu-Xin T, Qi-Chang Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: a review. South Afr J Bot. 2020;130:75–89. https://doi.org/10.1016/j.sajb.2019.12.018

28. Stomp M, Huisman J, Stal LJ, Matthijs HCP. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 2007;1(4):271–82. https://doi.org/10.1038/ismej.2007.59

29. Su P, Ding S, Wang D, Kan W, Yuan M, Chen X, Wu L. Plant morphology, secondary metabolites and chlorophyll fluorescence of Artemisia argyi under different LED environments. Photosynthesis Res. 2023:1–12. https://doi.org/10.1007/s11120-023-01026-w

30. Müller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001;125(4):1558–66. https://doi.org/10.1104/pp.125.4.1558

31. Fageria VD. Nutrient interactions in crop plants. J Plant Nutr. 2001;24(8):1269–90. https://doi.org/10.1081/pln-100106981

32. Olle M. The effect of silicon on the organically grown iceberg lettuce growth and quality. J Agricult Sci. 2017;2(28):82-6.

33. Khan I, Awan SA, Rizwan M, Brestic M, Xie W. Silicon: an essential element for plant nutrition and phytohormones signaling mechanism under stressful conditions. Plant Growth Regul. 2023;100(2):301–9. https://doi.org/10.1007/s10725-022-00872-3

34. Greger M, Landberg T, Vaculík M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants. 2018;7(2):41. https://doi.org/10.3390/plants7020041

35. Kovács S, Kutasy E, Csajbók J. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants. 2022;11(9):1223. https://doi.org/10.3390/plants11091223

36. Galati VC, Marques KM, Morgado CMA, Muniz ACC, Mattiuz ABCFABH. Silicon in the turgidity maintenance of American lettuce. African J Agricult Res. 2015;10(51):4699–705. https://doi.org/10.5897/ajar2015.10196

37. Neto HDSL, Guimarães MDA, Sampaio IMG, Rabelo JDS, Viana CDS, Mesquita RO. Can silicon (Si) influence growth, physiology and postharvest quality of lettuce? Australian J Crop Sci. 2020;14(01):71–7. https://doi.org/10.21475/ajcs.20.14.01.p1848

38. Janzen HH, Bettany JR. Sulfur nutrition of rapeseed: I. influence of fertilizer nitrogen and sulfur rates. Soil Sci Soc Am J. 1984;48(1):100– 7. https://doi.org/10.2136/sssaj1984.03615995004800010019x

39. Shah SH, Islam S, Mohammad F. Sulphur as a dynamic mineral element for plants: a review. J Soil Sci Plant Nutr. 2022;22(2):2118– 43. https://doi.org/10.1007/s42729-022-00798-9

40. Ma JF. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutrition. 2004;50(1):11–8. https://doi.org/10.1080/00380768.2004.10408447

41. Park JC, Sp N, Kim HD, Kang DY, Kim IH, Bae SW, et al. The exogenous application of non-toxic sulfur contributes to the growth-promoting effects of leaf lettuce (Lactuca sativa L. var. crispa). Agriculture. 2021;11(8):769. https://doi.org/10.3390/agriculture11080769

42. Capaldi FR, Gratão PL, Reis AR, Lima LW, Azevedo RA. Sulfur metabolism and stress defense responses in plants. Trop Plant Biol. 2015;8(3–4):60–73. https://doi.org/10.1007/s12042-015-9152-1

43. Hoque MM, Ajwa H, Othman M, Smith R, Cahn M. Yield and postharvest quality of lettuce in response to nitrogen, phosphorus, and potassium fertilizers. HortScience. 2010;45(10):1539–44.

44. Neves MG, Da Silva Júnior ML, De Oliveira Neto CF, Okumura RS, Pamplona Albuquerque GD, Santiago TDS. Growth, yield and post-harvest evaluation of lettuce plants subjected to different leaf silicon concentrations. Rev Agricult Neotropical. 2020;7(4):40–8. https://doi.org/10.32404/rean.v7i4.4448

45. Suharti WS, Bahtiar J, Kharisun K. Pengaruh ragam sumber silika terhadap pertumbuhan dan ketahanan tanaman padi terinfeksi Rhizoctonia solani. J Pertanian Terpadu. 2021;9(1):26–39. https://doi.org/10.36084/jpt.v9i1.297

46. de Mattos EM, Binkley D, Campoe OC, Alvares CA, Stape JL. Variation in canopy structure, leaf area, light interception and light use efficiency among Eucalyptus clones. Forest Ecol Manage. 2020;463:118038. https://doi.org/10.1016/j.foreco.2020.118038

47. Pilon C, Soratto RP, Moreno LA. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 2013;53(4):1605–14. https://doi.org/10.2135/cropsci2012.10.0580

48. Hartmann J, West AJ, Renforth P, Köhler P, De La Rocha CL, Wolf-Gladrow DA, et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev Geophys. 2013;51(2):113–49. https://doi.org/10.1002/rog.20004

49. Zenda T, Liu S, Dong A, Duan H. Revisiting sulphur—the once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture. 2021;11(7):626. https://doi.org/10.3390/agriculture11070626

50. Costa MG, dos Santos Sarah MM, de Mello Prado R, Palaretti LF, de Cássia Piccolo M, de Souza Júnior JP. Impact of Si on C, N, and P stoichiometric homeostasis favors nutrition and stem dry mass accumulation in sugarcane cultivated in tropical soils with different water regimes. Front Plant Sci. 2022;13:949909. https://doi.org/10.3389/fpls.2022.949909

51. Chung JS, Kim HC, Yun SM, Kim HJ, Kim CS, Lee JJ. Metabolite analysis of lettuce in response to sulfur nutrition. Horticulturae. 2022;8(8):734. https://doi.org/10.3390/horticulturae8080734

52. Fitriyani HP, Haryanti S. Pengaruh Penggunaan Pupuk Nanosilika terhadap Pertumbuhan Tanaman Tomat (Solanum lycopersicum) var. Bulat. Buletin Anatomi dan Fisiologi. 2016;24(1):43–1. https://doi.org/10.14710/baf.v24i1.11691

53. Karami A, Ansari NA, Hasibi P. Evaluation of some chemical/ biochemical compounds of leaf lettuce (Lactuca sativa L.) to the quality of radiant light in floating system. Sci Horticult. 2022;304:111319. https://doi.org/10.1016/j.scienta.2022.111319

54. Almeida Rodrigues A, Almeida Rodrigues D, de Fátima Sales J, Carvalho Vasconcelos Filho S, Carlos Costa A, Lino Rodrigues C, et al. Morphoanatomical, physiological, and biochemical indicators in Lactuca sativa L. germination and growth in response to fluoride. Plants. 2022;11(23):3406. https://doi.org/10.3390/plants11233406

55. O’Hara P, Slabas AR, Fawcett T. Fatty acid synthesis in developing leaves of Brassica napus in relation to leaf growth and changes in activity of 3?oxoacyl?ACP reductase. FEBS Lett. 2001;488(1):18– 22. https://doi.org/10.1016/s0014-5793(00)02406-6

56. Yu Z, Juhasz A, Islam S, Diepeveen D, Zhang J, Wang P, et al. Impact of mid-season sulphur deficiency on wheat nitrogen metabolism and biosynthesis of grain protein. Sci Rep. 2018;8(1):2499.

https://doi.org/10.1038/s41598-018-20935-8

57. Suwignyo B, Izzati F, Astuti A, Rini EA. Nutrient content of Alfalfa (Medicago sativa L.) regrowth I in different fertilizers and lighting. In: IOP Conference Series. Earth and Environmental Science. Bristol: IOP Publishing Ltd; 2020. vol. 465, p. 1–6. https://doi.org/10.1088/1755-1315/465/1/012035

58. Pratiwi A, Nuryanti. Studi kelayakan kadar air, abu, protein, dan timbal (pb) pada sayuran di pasar Sunter, Jakarta Utara sebagai suplemen makanan. Indonesia Nat Res Pharm J. 2018;2(2):67–78.

https://doi.org/10.52447/inspj.v2i2.1910

59. Patil SS, Dhumal SS, Patgaonkar DR, Garande VK, Kaur M. 29 post-harvest behavior of different lettuce cultivars and their cut form sunder different storage conditions. Int J Environ Agricult Biotechnol. 2017;2(3):1232–46. https://doi.org/10.22161/ijeab/2.3.29

60. Agüero MV, Barg MV, Yommi A, Camelo A, Roura SI. Postharvest changes in water status and chlorophyll content of lettuce (Lactuca Sativa L.) and their relationship with overall visual quality. J Food Sci. 2008;73(1):S47–55. https://doi.org/10.1111/j.1750-3841.2007.00604.x

61. Dao J, Stenchly K, Traoré O, Amoah P, Buerkert A. Effects of water quality and post-harvest handling on microbiological contamination of lettuce at urban and Peri-urban locations of Ouagadougou, Burkina Faso. Foods (Basel, Switzerland). 2018;7(12):206. https://doi.org/10.3390/foods7120206

62. Belisle CE, Sargent, SA, Brecht, JK, Sandoya, GV, Sims, CA. Accelerated shelf-life testing to predict quality loss in Romaine-type lettuce. HortTechnology. 2021;31(4):490–9. https://doi.org/10.21273/horttech04812-21

63. Samanta S, Singh A, Roychoudhury A. Involvement of sulfur in the regulation of abiotic stress tolerance in plants. In: Roychoudhury A, Tripathi DK, editors. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress. New Jersey: Wiley; 2020. p. 437–66. https://doi.org/10.1002/9781119552154.ch22

64. Chang Y, Cui H, Wang Y, Li C, Wang J, Jin M, et al. Silicon spraying enhances wheat stem resistance to lodging under light stress. Agronomy. 2023;13(10):2565. https://doi.org/10.3390/agronomy13102565

65. Hussain S, Shuxian L, Mumtaz M, Shafiq I, Iqbal N, Brestic M, et al. Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). J Hazardous Mater. 2021;401:123256. https://doi.org/10.1016/j.jhazmat.2020.123256

Article Metrics
37 Views 17 Downloads 54 Total

Year

Month

Related Search

By author names

Similar Articles