Home >Archive

Volume: 6, Issue: 3, May-June, 2018
DOI: 10.7324/JABB.2018.60310

Research Article

Cold-active enzymes in food biotechnology: An updated mini review

Mohammed Kuddus

  Author Affiliations


Abstract

Cold-active enzymes and their anticipated application in various industries including food industry attracted attention of worldwide scientific community. Cold-active enzymes, also known as psychrophilic enzymes, possess high catalytic activity at low and moderate temperatures. Due to low temperature activity, these enzymes utilize less energy in a biochemical reactions and also stabilize fragile compounds in the reaction medium. The source of cold-active enzymes are basically psychrophilic/psychrotrophic microorganisms which is found in cold environments. In comparison to mesophilic and thermophilic enzymes, till date very few cold-active enzymes are known and least explored so far in food industry. This review contains latest development and innovation in cold-active enzymes along with their applications in food biotechnology.

Keywords:

Cold-active enzymes, food enzymes, psychrophiles, cold-adaptation, biocatalyst.



Citation: Kuddus M. Cold-active enzymes in food biotechnology: An updated mini review. J App Biol Biotech. 2018;6(3):58-63. DOI: 10.7324/JABB.2018.60310


Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

1. Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applications. Curr Opin Biotechnol. 2002; 13: 345-351. https://doi.org/10.1016/S0958-1669(02)00328-2

2. Wong DWS. Food enzymes - structure and mechanism. Chapman and Hall, USA; 1995. https://doi.org/10.1007/978-1-4757-2349-6

3. Guomundsdottir A, Bjarnason J. Applications of cold-adapted proteases in the food industry. In: Rastall, R. (Ed.), Novel enzyme technology for food applications. Woodhead Publishing, Cambridge, UK, 2007; pp. 205-214.

4. Oort M. Enzymes in food technology - introduction. In: Robert JW, Oort M (Eds), Enzymes in Food Technology. Wiley-Blackwell, 2009; pp. 1-16. https://doi.org/10.1002/9781444309935.ch1

5. Avendano KA, Anguiano M, Lopez CE, Montanez LE, Sifuentes L, Balagurusamy N. Microbial enzymes applications in food processing. Agro Food Ind Hi Tech. 2016; 27(4): 63-67.

6. Singh R, Kumar M, Mittal A, Mehta PK. Microbial enzymes: industrial progress in 21st century. 2016; 3 Biotech 6: 174.

7. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 2000; 18: 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4

8. Demirjian DC, Moris-Varas F, Cassidy CS. Enzymes from extremophiles. Curr Opin Chem Biol. 2001; 5: 144–151. https://doi.org/10.1016/S1367-5931(00)00183-6

9. Eichler J. Biotechnological uses of archaeal extremozymes. Biotechnol Adv. 2001; 19: 261–278. https://doi.org/10.1016/S0734-9750(01)00061-1

10. Cavicchioli R, Siddiqui KS, Andrewss D, Sowers KR. Low-temperature extremophiles and their applications. Curr Opin Biotechnol. 2002; 13: 253–261. https://doi.org/10.1016/S0958-1669(02)00317-8

11. Deming JW. Psychrophiles and polar regions. Curr Opin Microbiol. 2002; 5: 301-309. https://doi.org/10.1016/S1369-5274(02)00329-6

12. Gupta R, Beg QK, Lorenz P. Bacterial alkaline proteases: molecular approach and industrial application. Appl Microbiol Biotechnol. 2002; 59: 15-32. https://doi.org/10.1007/s00253-002-0975-y

13. Margesin R, Feller G, Gerday C, Russell N. Cold-adapted micro-organisms: Adaptation strategies and biotechnological potential. In: The Encyclopedia of Environmental Microbiology, Vol. 2, G. Bitton (Ed.), John Wiley & Sons, New York, 2002; pp. 871–885.

14. Burg BV. Extremophiles as a source for novel enzymes, Curr Opin Microbiol. 2003; 6: 213–218. https://doi.org/10.1016/S1369-5274(03)00060-2

15. Feller G, Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev Microbiol. 2003; 1: 200-208. https://doi.org/10.1038/nrmicro773

16. Georlette D, Blaise V, Collins T, D'Amico S, Gratia E. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev. 2004; 28: 25-42. https://doi.org/10.1016/j.femsre.2003.07.003

17. Javed A, Qazi JI. Psychrophilic microbial enzymes implications in coming biotechnological processes. American Sci Res J Eng Technol Sci. 2016; 23(1): 103-120.

18. Kuddus M, Ramteke PW. Recent developments in production and biotechnological applications of cold-active microbial proteases. Critical Rev Microbiol. 2012; 38(4): 330–338. https://doi.org/10.3109/1040841X.2012.678477

19. Austin B. Marine microbiology. Cambridge University Press. Cambridge. 1988.

20. Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975; 39: 144-167.

21. Willerslev E, Hansen AJ, Poinar HN. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol. 2004; 19: 141-147. https://doi.org/10.1016/j.tree.2003.11.010

22. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B. Glacial ecosystems. Ecol Monogr. 2008; 78: 41-67. https://doi.org/10.1890/07-0187.1

23. MacDonell S, Fitzsimons S. The formation and hydrological significance of cryoconite holes. Prog Phys Geogr. 2008; 32: 595-610. https://doi.org/10.1177/0309133308101382

24. Pulicherla KK, Ghosh M, Kumar PS, Rao KRSS. Psychrozymes- The next generation industrial enzymes. J Marine Sci Res Develop. 2011; 1: 102. https://doi.org/10.4172/2155-9910.1000102

25. Buzzini P, Branda E, Goretti M, Turchetti B. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol. 2012; 82: 217–241. https://doi.org/10.1111/j.1574-6941.2012.01348.x

26. Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calvi-o A, Rivas F, Batista S. Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol. 2012; 28(5): 2249-2256. https://doi.org/10.1007/s11274-012-1032-3

27. Struvay C, Feller G. Optimization to Low temperature activity in psychrophilic enzymes. Int J Mol Sci. 2012; 13: 11643-11665. https://doi.org/10.3390/ijms130911643

28. Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front Microbiol. 2016; 7: Article 1408. https://doi.org/10.3389/fmicb.2016.01408

29. Kuddus M, Roohi, Arif JM, Ramteke PW. An overview of cold-active microbial \a-amylase: Adaptation strategies and biotechnological potentials. Biotechnol. 2011; 10(3): 246-258. https://doi.org/10.3923/biotech.2011.246.258

30. Kuddus M. Cold-active microbial enzymes. Biochem Physiol. 2015; 4(1): e132.

31. Lee CW, Jang SH, Chung HS. Improving the stability of cold-adapted enzymes by immobilization. Catalysts. 2017; 7: 112. https://doi.org/10.3390/catal7040112

32. He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, Wei D. Functional expression of a novel \a-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol. 2017; 17: 22. https://doi.org/10.1186/s12896-017-0343-8

33. Mageswari A, Subramanian P, Chandrasekaran S, Karthikeyan S, Gothandam KM. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chem. 2017; 217: 18–27. https://doi.org/10.1016/j.foodchem.2016.08.064

34. Santi CDe, Altermark B, Pierechod MM, Ambrosino L, Pascale DDe, Willassen NP. Characterization of a cold-active and salt tolerant esterase identified by functional screening of Arctic metagenomic libraries. BMC Biochem. 2016; 17:1. https://doi.org/10.1186/s12858-016-0057-x

35. Joseph B, Ramteke PW, Thomas G, Shrivastava N. Standard review on cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev. 2007; 2(2): 39-48.

36. Su H, Mai Z, Yang J, Xiao Y, Tian X, Zhang S. Cloning, expression, and characterization of a cold-active and organic solvent-tolerant lipase from Aeromicrobium sp. SCSIO 25071. J Microbiol Biotechnol. (2016; 26(6): 1067–1076. https://doi.org/10.4014/jmb.1511.11068

37. Nakagawa T, Nagaoka T, Miyaji T, Tomizuka N. Cold-active polygalacturonase from psychrophilic-basidiomycetous yeast Cystofilobasidium capitatum strain PPY-1. Biosci Biotechnol Biochem. 2005; 69(2): 419-421. https://doi.org/10.1271/bbb.69.419

38. Ramya LN, Pulicherla KK. Molecular insights into cold active polygalacturonase enzyme for its potential application in food processing. J Food Sci Technol. 2015; 52(9): 5484-5496. https://doi.org/10.1007/s13197-014-1654-6

39. Kuddus M, Ramteke PW. A cold-active extracellular metalloprotease from Curtobacterium luteum (MTCC 7529): enzyme production and characterization. J Gen Appl Microbiol. 2008; 54(6): 385-392. https://doi.org/10.2323/jgam.54.385

40. Roohi, Kuddus M. Bio-statistical approach for optimization of cold-active \a-amylase production by psychrotolerant Microbacterium foliorum GA2 in solid state fermentation. Biocat Ag Biotech. 2014; 3: 175-181. https://doi.org/10.1016/j.bcab.2013.09.007

41. Roohi, Kuddus M, Saima. Cold-active detergent-stable extracellular \a-amylase from Bacillus cereus GA6: Biochemical characteristics and its perspectives in laundry detergent formulation. J Biochem Tech. 2013; 4: 636-644.

42. Zanphorlin LM, de Giuseppe PO, Honorato RV, Tonoli CC, Fattori J, Crespim E, de Oliveira PS, Ruller R, Murakami MT. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 beta-glucosidase from Exiguobacterium antarcticum B7. Sci Rep. 2016; 6: 23776. https://doi.org/10.1038/srep23776

43. Kuddus M, Ramteke PW. Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. African J Microbiol Res. 2011; 5(7): 809-816 https://doi.org/10.5897/AJMR10.806

44. Roohi, Kuddus M. Statistical optimization of cold-active chitinase production by mutagenized cells of multi-enzyme producing Bacillus cereus GA6. Rendiconti Lincei. 2015; 26(3): 271-280. https://doi.org/10.1007/s12210-015-0447-9

45. Truongvan N, Jang SH, Lee C. Flexibility and stability trade-off in active site of cold-adapted Pseudomonas mandelii esterase EstK. Biochem. 2016; 55: 3542–3549. https://doi.org/10.1021/acs.biochem.6b00177

46. Guo H, Zhang Y, Shao Y, Chen W, Chen F, Li M. Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7. Extremophiles. 2016; 20: 451–459. https://doi.org/10.1007/s00792-016-0835-9

47. Wu G, Zhang X, Wei L, Wu G, Kumar A, Mao T, Liu Z. A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis. Int J Biol Macromol. 2015; 81: 180–187. https://doi.org/10.1016/j.ijbiomac.2015.07.045

48. Brault G, Shareck F, Hurtubise Y, Lepine F, Doucet N. Isolation and characterization of EstC, a new cold-active esterase from S. coelicolor A3(2). PLoS ONE. 2012; 7:e32041. https://doi.org/10.1371/journal.pone.0032041

49. Ganasen M, Yaacob N, Rahman RNZRA, Leow ATC, Basri M, Salleh AB, Ali MSM. Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol. 2016; 92: 1266–1276. https://doi.org/10.1016/j.ijbiomac.2016.06.095

50. Tanaka D, Yoneda S, Yamashiro Y, Sakatoku A, Kayashima T, Yamakawa K. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol. 2012; 168: 327–338. https://doi.org/10.1007/s12010-012-9776-7

51. Pascale D, Giuliani M, De Santi C, Bergamasco N, Amoresano A, Carpentieri A, Parrilli E, Tutino ML. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization. Polar Sci. 2010; 4: 285-294. https://doi.org/10.1016/j.polar.2010.03.009

52. Wang Q, Hou Y, Xu Z, Miao J, Li G. Purification and properties of an extracellular cold-active protease from the psychrophilic bacterium Pseudoalteromonas sp. NJ276. Biochem Eng. 2008; 38: 362-368. https://doi.org/10.1016/j.bej.2007.07.025

53. Damare S, Raghukumar C, Muraleedharan U, Raghukumar S. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enz Microb Technol. 2006; 39(2): 172-181. https://doi.org/10.1016/j.enzmictec.2006.03.032

54. Alam SI, Dube S, Reddy GS, Bhattacharya BK, Shivaji S, Singh L. Purification and characterization of extracellular protease produced by Clostridium sp. from Schirmacher oasis, Antarctica. Enz Micro Technol. 2005. 36(5-6): 824-31. https://doi.org/10.1016/j.enzmictec.2005.01.011

55. Margesin R, Dieplinger H, Hofmann J, Sarg B, Lindner H. A cold-active extracellular metalloprotease from Pedobacter cryoconitis: production and properties. Res Microbiol. 2005; 156(4): 499-505. https://doi.org/10.1016/j.resmic.2004.12.008

56. Shi JS, Wu QF, Xu ZH, Tao WY. Identification of psychrotrophs SYP-A2-3 producing cold-adapted protease from the No. 1 Glacier of China and study on its fermentation conditions. Wei Sheng Wu Xue Bao. 2005; 45(2): 258-263.

57. Rajaei S, Noghabi KA, Sadeghizadeh M, Zahiri HS. Characterization of a pH and detergent-tolerant, cold-adapted type I pullulanase from Exiguobacterium sp. SH3. Extremophiles 2015; 19: 1145–1155. https://doi.org/10.1007/s00792-015-0786-6

58. Zhang Y, He S, Simpson BK. A cold active transglutaminase from Antarctic krill (Euphausia superba): Purification, characterization and application in the modification of cold-set gelatin gel. Food Chem. 2017; 232: 155–162. https://doi.org/10.1016/j.foodchem.2017.03.135

59. Wierzbicka-Wos A, Cieslinski H, Wanarska M, Kozlowska-Tylingo K, Hildebrandt P, Kur J. A novel cold-active b-D-galactosidase from the Paracoccus sp. 32d - gene cloning, purification and characterization. Microb Cell Fact. 2011; 10: 108-120. https://doi.org/10.1186/1475-2859-10-108

60. Białkowska AM, Cieśliński H, Nowakowska KM, Kur J, Turkiewicz M. A new \ß-galactosidase with a low temperature optimum isolated from the Antarctic Arthrobacter sp. 20B: gene cloning, purification and characterization. Arch Microbiol. 2009; 191: 825. https://doi.org/10.1007/s00203-009-0509-4

61. Nam ES, Kim YH, Shon KH, Ahn JK. Isolation and characterization of a psychrophilic bacterium producing cold active lactose hydrolyzing enzyme from soil of Mt. Himalaya in Nepal. African J Microbiol Res. 2011; 5(16): 2198-2206.

62. Pawlak-Szukalska A, Wanarska M, Popinigis AT, Kur J. A novel cold-active \ß-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 20B " Gene cloning, purification and characterization. Process Biochem. 2014; 49: 2122–2133. https://doi.org/10.1016/j.procbio.2014.09.018

63. Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol. 2006; 71: 773-782. https://doi.org/10.1007/s00253-005-0183-7

64. Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ. Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol. 2011; 4(4): 449-460. https://doi.org/10.1111/j.1751-7915.2011.00258.x

65. Wu S, Liu Y, Yan Q, Jiang Z. Gene cloning, functional expression and characterisation of a novel glycogen branching enzyme from Rhizomucor miehei and its application in wheat breadmaking. Food Chem. 2014; 159, 85–94. https://doi.org/10.1016/j.foodchem.2014.02.161

66. Kunamneni A, Plou FJ, Ballesteros A, Alcalde M. Laccases and their applications: a patent review. Recent Pat Biotechnol. 2008; 2: 10-24. https://doi.org/10.2174/187220808783330965

67. Joseph B, Ramteke PW, Thomas G. Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv. 2008; 26(5): 457-470. https://doi.org/10.1016/j.biotechadv.2008.05.003

68. Tutino ML, di Prisco G, Marino G, de Pascale D. Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept Lett. 2009; 16: 1172-1180. https://doi.org/10.2174/092986609789071270

69. Pan X, Tu T, Wang L, Luo H, Ma R, Shi P. A novel low-temperature-active pectin methylesterase from Penicillium chrysogenum F46 with high efficiency in fruit firming. Food Chem. 2014; 162: 229–234. https://doi.org/10.1016/j.foodchem.2014.04.069

70. Adapa V, Ramya LN, Pulicherla KK, Sambasiva Rao KRS. Cold active pectinases: Advancing the food industry to the next generation. Appl Biochem Biotechnol. 2014; 172: 2324–2337. https://doi.org/10.1007/s12010-013-0685-1

71. Martin MC, Morata de Ambrosini VI. Cold-active acid pectinolytic system from psychrotolerant Bacillus: color extraction from red grape skin. Am J Enol Vitic. 2013; 64: 495-504. https://doi.org/10.5344/ajev.2013.13002

72. Huang H, Luo H,Wang Y, Fu D, Shao N, Yang P, Meng K, Yao B. Novel low-temperature-active phytase from Erwinia carotovora var. carotovota ACCC 10276. J Microbiol Biotechnol. 2009; 19: 1085-1091. https://doi.org/10.4014/jmb.0901.039

73. Tu T, Meng K, Bai Y, Shi P, Luo H, Wang Y. High-yield production of a low-temperature-active polygalacturonase for papaya juice clarification. Food Chem. 2013; 141: 2974–2981. https://doi.org/10.1016/j.foodchem.2013.05.132

74. Dornez E, Verjans P, Arnaut F, Delcour JA, Courtin CM. Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J Agric Food Chem. 2011; 59: 9553–9562. https://doi.org/10.1021/jf201752g

75. Collins T, Gerday C, Feller G. Xylanases, xylanase families and xtremophilic xylanases. FEMS Microbiol Rev. 2005; 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005

Article Metrics

Similar Articles