Home >Archive

Volume: 6, Issue: 4, July-August, 2018
DOI: 10.7324/JABB.2018.60401

Research Article

Therapeutic potential of harmaline, a novel alkaloid, against cervical cancer cells in vitro: Apoptotic induction and DNA interaction study

Paromita Bhattacharjee, Sarita Sarkar, Tapas Ghosh, Kakali Bhadra

  Author Affiliations


The study emphasizes the growth inhibitory effect of harmaline on HeLa (human cervical cancer) cell line and mode and mechanism of binding with CT DNA (calf thymus DNA). The results of cytotoxic study performed through MTT assay indicates that harmaline have concentration dependent growth inhibitory effect on HeLa cell line with GI50 value of 28 µM. Furthermore, the alkaloid induced DNA damage and changes in mitochondrial membrane potential in the cell line. The alkaloid shows reactive oxygen species dependent cellular damage with significant arrest in G2 /M population of the cell. Biophysical experiments further established the Ki w value (product of cooperative binding affinity and the cooperative factor) of harmaline with CT DNA to be 5.60 × 105 M−1. Harmaline showed a progressive quenching of the fluorescence emission spectra. Circular dichroism study shows significant structural changes of DNA with subsequent induction of optical activity in the bound achiral alkaloid molecule. The alkaloid stabilizes the DNA to 10°C. Intercalated state of harmaline inside DNA helix was shown by viscometric and ferrocyanide quenching. The results highlight the importance of alkaloid- DNA interaction for developing nucleic acid based therapeutic agents.


Beta carboline, Cytotoxicity, Reactive oxygen species, Spectroscopy, Isothermal calorimeter.

Citation: Bhattacharjee P, Sarkar S, Ghosh T, Bhadra K. Therapeutic potential of harmaline, a novel alkaloid, against cervical cancer cells in vitro: Apoptotic induction and DNA interaction study. J App Biol Biotech. 2018;6(04):1-8. DOI: 10.7324/JABB.2018.60401

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D, et al. Global cancer statistics. CA Cancer J Clin 2011;61:69-90. https://doi.org/10.3322/caac.20107

2. Ali R1, Mirza Z, Ashraf GM, Kamal MA, Ansari SA, Damanhouri GA. New anticancer agents: Recent developments in tumor therapy. Anticance Res 2012;32:2999-3005.

3. Bhadra K, Kumar GS. Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Med Res Rev 2011;31:821-62. https://doi.org/10.1002/med.20202

4. Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med 2013;4:1231-5.

5. Roberts MF, Wink M. Ecology and Medicinal Applications, Alkaloids. New York, London: Plenum Press; Biochemistry; 1998. p. 1-7.

6. Kumar GS. Isoquinoline alkaloids and their analogs: Nucleic acid and protein binding aspects, and therapeutic potential for drug design. In: Brahmachari G, editor. Bioactive Natural Products: Chemistry and Biology. Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 241-77.

7. Bournine L, Bensalem S, Fatmi S, Bedjou F, Mathieu V, Iguer-Ouada M, et al. Evaluation of the cytotoxic and cytostatic activities of alkaloid extracts from different parts of Peganum harmala L. (Zygophyllaceae). Eur J Integ Med 2016;9:91-6. https://doi.org/10.1016/j.eujim.2016.10.002

8. Zeng Y, Zhang Y, Weng Q, Hu M, Zhong G. Cytotoxic and Insecticidal Activities of derivatives of harmine, a natural insecticidal component isolated from Peganum harmala. Molecules 2010;15:7775-91. https://doi.org/10.3390/molecules15117775

9. Nafisi S, Bonsaii M, Maali P, Khalilzadeh MA, Manouchehri F. \ß-carboline alkaloids bind DNA. J Photochem Photobio B Biol 2010;100:84-91. https://doi.org/10.1016/j.jphotobiol.2010.05.005

10. Berrougui H, Isabelle M, Cloutier M, Hmamouchi M, Khalil A. Protective effects of Peganum harmala L. extract, harmine and harmaline against human low-density lipoprotein oxidation. J Pharm Pharmacol 2006;58:967-74. https://doi.org/10.1211/jpp.58.7.0012

11. Mahmoudian M, Jalilpour H, Salehian P. Toxicity of Peganum harmala: Review and a case report. Iran J Pharmacol Therap 2002;1:1-4.

12. Di Giorgio C, Delmas F, Ollivier E, Elias R, Balansard G, Timon-David P. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Exp Parasitol 2004;106:67-74. https://doi.org/10.1016/j.exppara.2004.04.002

13. Rharrabe K, Bakrim A, Ghailani N, Sayah F. Bioinsecticidal effect of harmaline on Plodia interpunctella development (lepidoptera pyralidae). Pestic Biochem Physiol 2007;89:137. https://doi.org/10.1016/j.pestbp.2007.05.002

14. Zheng XY, Zhang ZJ, Chou GX, Wu T, Cheng XM, Wang CH, et al. Acetylcholinesterase inhibitive activity-guided isolation of two new alkaloids from seeds of Peganum nigellastrum Bunge by an in vitro TLC-bioautographic assay. Arch Pharmacol Res 2009;32:1245-51. https://doi.org/10.1007/s12272-009-1910-x

15. Herraiz T. Identification and occurrence of beta-carboline alkaloids in raisins and inhibition of monoamine oxidase (MAO). J Agric Food Chem 2007;55:8534-40. https://doi.org/10.1021/jf0719151

16. Sobhani AM, Ebrahimi SA, Mahmoudian M. An in vitro evaluation of human DNA topoisomerase I inhibition by Peganum harmala L. Seeds extract and its beta-carboline alkaloids. J Pharm Pharm Sci 2002;5:19-23.

17. Berrougui H, Lopez-Lazaro M, Martin-Cordero C, Mamouchi M, Ettaib A, Herrera MD. Cytotoxic activity of methanolic extract and two alkaloids extracted from seeds of Peganum harmala L. J Nat Remedy 2005;5/1:41-5.

18. Ayoob I, Hazari YM, Lone SH, Rehman S, Khuroo MA, Fazili KM, et al. Phytochemical and cytotoxic evaluation of Peganum harmala: Structure activity relationship studies of harmine. Med Chem Drug Discov DOI: 10.1002/slct.201700232. https://doi.org/10.1002/slct.201700232

19. Cao R, Peng W, Wang Z, Xu A. b-Carboline alkaloids: Biochemical and pharmacological functions. Curr Med Chem 2007;14:479-500. https://doi.org/10.2174/092986707779940998

20. Sarkar S, Bhattacharjee P, Bhadra K. DNA binding and apoptotic induction ability of harmalol in HepG2: Biophysical and biochemical approaches. Chem Biol Interact 2016;258:142-52. https://doi.org/10.1016/j.cbi.2016.08.024

21. Sarkar S, Pandya P, Bhadra K. Sequence specific binding of beta-carboline alkaloid harmalol with deoxyribonucleotides: Binding heterogeneity, conformational, thermodynamic and cytotoxic aspects. PLoS One 2014;9:1-14. https://doi.org/10.1371/journal.pone.0108022

22. Bhattacharjee P, Sarkar S, Pandya P, Bhadra K. Targeting different RNA motifs by beta carboline alkaloid, harmalol: A comparative photophysical, calorimetric and molecular docking approach. J Biomol Struct Dyn 2016;34:2722-40. https://doi.org/10.1080/07391102.2015.1126694

23. Sarkar S, Bhadra K. Binding of alkaloid harmalol to DNA: Photophysical and calorimetric approach. J Photochem Photobio B Biol 2014;130:272-80. https://doi.org/10.1016/j.jphotobiol.2013.11.021

24. Bhadra K, Maiti M, Kumar GS. Berberine-DNA complexation: New insights into the cooperative binding and energetic aspects. Biochim Biophys Acta (BBA) Gen Subj 2008;1780:1054-61. https://doi.org/10.1016/j.bbagen.2008.05.005

25. Sinha R, Islam MM, Bhadra K, Kumar GS, Banerjee A, Maiti M, et al. The binding of DNA intercalating and non-intercalating compounds to A-form and protonated form of poly(rC).poly(rG): Spectroscopic and viscometric study. Bioorg Med Chem 2006;14:800-14. https://doi.org/10.1016/j.bmc.2005.09.007

26. Chatterjee S, Mallick S, Buzzetti F, Fiorillo G, Syeda TM, Lombardi P, et al. New 13-pyridinealkyl berberine analoguesintercalate to DNA and induce apoptosis in HepG2 and MCF-7 cells through ROS mediated p53 dependent pathway: Biophysical, biochemical and molecular modeling studies. RSC Adv 2015;5:90632-44. https://doi.org/10.1039/C5RA17214D

27. Biswas R, Mandal SK, Dutta S, Bhattacharyya SS, Boujedaini N, Khuda-Bukhsh AR, et al. Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: Evidences from in vitro studies on A375 cells. Evid Based Complement Alternat Med 2011;2011:568148. https://doi.org/10.1093/ecam/neq042

28. Liao W, McNutt MA, Zhu WG. The comet assay: A sensitive method for detecting DNA damage in individual cells. Methods 2009;48:46-53. https://doi.org/10.1016/j.ymeth.2009.02.016

29. Bhadra K, Maiti M, Kumar GS. Molecular recognition of DNA by small molecules: AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine. Biochim Biophys Acta 2007;1770:1071-80. https://doi.org/10.1016/j.bbagen.2007.03.001

30. Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: Comparative structural and thermodynamic aspects of aristololactam-\ß-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011;6:e23186. https://doi.org/10.1371/journal.pone.0023186

31. Islam MM, Chowdhury SR, Kumar GS. Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J Phys Chem B 2009;113:1210-24. https://doi.org/10.1021/jp806597w

32. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007;35:495-516. https://doi.org/10.1080/01926230701320337

33. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010;44. DOI: 10.3109/10715761003667554. https://doi.org/10.3109/10715761003667554

34. Bhadra K, Maiti M, Kumar GS. Interaction of isoquinoline alkaloid palmatine with deoxyribonucleic acids: Binding heterogeneity, and conformational and thermodynamic aspects. Chem Biodivers 2008;5:575-90. https://doi.org/10.1002/cbdv.200890054

35. Islam MM, Kumar GS. RNA targeting by small molecule alkaloids: Studies on the binding of palmatine and berberine to polyribonucleotides and comparison to ethidium. J Mol Struct 2008;875:382-91. https://doi.org/10.1016/j.molstruc.2007.05.004

36. Neidle S, Waring MJ. Molecular Aspects of Anticancer Action. Basingstoke, U.K: Macmillan Press Ltd.; 1981.

37. Buurma NJ, Haq I. Advances in the analysis of isothermal titration calorimetry data for ligand-DNA interactions. Methods 2007;42:162-72. https://doi.org/10.1016/j.ymeth.2007.01.010

38. O'Brien R, Haq I, Ladbury JE. In: Doyle M, editors. Applications of Biocalorimetry: Binding, Stability and Enzyme Kinetics. Biocalorimetry. Vol. 2. West Sussex, England: Wiley John and Sons Ltd.; 2004. p. 3-253.

39. Saboury AA, Atri MS, Sanati MH, Moosavi-Movahedi AA, Hakimelahi GH, Sadeghi M, et al. A thermodynamic study on the interaction between magnesium ion and human growth hormone. Biopolymers 2006;81:120-6. https://doi.org/10.1002/bip.20386

40. Du W, Wang B, Li Z. Interaction of harmine with oligonucleotide d(GTGCAC)2. Thermochim Acta 2004;416:59-63. https://doi.org/10.1016/j.tca.2003.11.025

41. Yang M, Wang K, Zang CB, Wang BH, Zang YM. Binding of carboline derivatives to calf thymus DNA-determination of binding mode and binding strength. J Chinese Pharm Sci 1994;3:51-8.

42. Chaires JB. A thermodynamic signature for drug-DNA binding mode. Arch Biochem Biophys 2006;453:26-31. https://doi.org/10.1016/j.abb.2006.03.027

Article Metrics

Similar Articles

In-vitro Assessment of Carbendazim and Copper oxychloride cytotoxicity on HaCaT and HepG2 human cell lines
Diksha Sateesh Bakre, Basappa Basawanneppa Kaliwal

Biosynthesis, characterization and antibacterial activity of silver nanoparticles from Aspergillus awamori
Vishwanatha T, Keshavamurthy M, Mallappa M, Murugendrappa MV , Nadaf YF, Siddalingeshwara KG, Dhulappa A