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ABSTRACT

The hemolymph of spiders contains several antimicrobial peptides (AMPs), which are one of the potential sources of 
antibiotics against drug resistant microbes. In this context, we have studied antimicrobial potential in the hemolymph 
of the spiders Stegodyphus sarasinorum and Nephila pilipes against ten pathogenic bacteria. The hemolymph of 
S. sarasinorum and N. pilipes yielded maximum Zone of Inhibition against Streptococcus pneumoniae (15 mm) and 
Staphylococcus aureus (10.5 mm), respectively. The total hemolymph protein content of N. pilipes and S. sarasinorum 
was 91.8 µg/mL and 16.10 µg/mL, respectively. The dominant band on the protein profile of S. sarasinorum and 
N. pilipes was in the range of 60–100  kDa and 50–120  kDa, respectively. The study showed that the spider’s 
hemolymph is a promising source of AMPs.

1. INTRODUCTION

Antibiotics saved millions of lives from the pathogenic infections. 
However, after the advent of multidrug resistance microorganisms, 
the conventional antibiotics become ineffective against pathogenic 
microbes [1]. Multidrug resistance, a global crisis, has necessitated 
the search of an effective antimicrobial agents to control the resistant 
bacteria. Drug-resistant microorganisms have emerged mainly due 
to the indiscriminate usage of broad-spectrum antibiotics against 
microbes [2,3]. This is a growing problem, particularly in hospitals 
where pathogenic bacteria get antibiotic resistance [4], which include 
methicillin-resistant Staphylococcus aureus and multi-drug resistant 
Mycobacterium tuberculosis [5].

Nature provides us many therapeutic products that are able to inhibit 
the growth of pathogenic microbes [6]. One of the natural products, 
the antibacterial peptides, has attracted much attention in recent 
days as a new therapeutic agent against the drug resistant microbial 
pathogens. These antimicrobial peptides (AMPs) have been reported 
to found in broad spectrum of organisms which include microbes, 
plants, and whole of the animal kingdom including invertebrates and 
vertebrates [7]. It is interesting that the diversity, complexity, and 
variety of the AMPs seem to be much wider than expected [8].
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Among the animal kingdom, Phylum Arthropoda is the largest 
phylum with diverse group of organisms and account for more than 
80% of all known living animal species [9]. The first AMP from 
arthropods was isolated from the moth Hyalophora cecropia, known 
as Cecropins [10]. After that, many AMP from other arthropods came 
to limelight in pharmaceutical industry and several AMPs have been 
reported in several scorpions and spiders [11]. Gomesin is the first 
AMP identified from the hemolymph of spiders [12]. Interestingly, 
spider AMPs showed sequence similarities to Protegrins, an AMP 
from porcine leukocytes [8].

Due to their potent antibacterial activity against antibiotic-resistant 
bacteria, AMPs have emerged as a novel class of antibiotics and a 
promising therapeutic option for many infections caused by multidrug-
resistant bacteria [13]. The persistence of different invertebrate 
populations in a contaminated environmental niche supports the 
development of disease-fighting AMPs [14-16]. For example, 
invertebrates such as cockroaches and centipedes thrive in polluted 
settings and frequently exposed to dangerous bacteria and disease-
causing substances, showing the presence of natural AMPs in their 
bodies to nullify the pathogens [17-19]. There are limited publications 
on the spider hemolymph’s antibacterial properties [8,20,21]. Spiders 
are regarded as one of the most abundant and technologically advanced 
suppliers of these peptide compounds due to their diversity [17,22].

Several studies have been attempted to test the spider’s 
hemolymph’s potential as antimicrobial agent, which includes the 
hemolymph of the spiders such as Lycosa singoriensis [23], Agelena 
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labyrinthica [8], Loxosceles intermedia [24], and Acanthoscurria 
rondoniae [25]. However, the full potential of AMPs in spiders is 
yet to be explored. In this context, we studied the antimicrobial 
potential of hemolymph of Indian cooperative spider Stegodyphus 
sarasinorum and Golden orb web spider Nephila pilipes against 
microbial pathogens. Further, we quantify the proteins present in 
the spider’s hemolymph and made an effort to separate the proteins 
from the spider hemolymph.

2. MATERIALS AND METHODS

2.1. Study Species
The Indian cooperative spider S. sarasinorum belongs to the family 
Eresidae. It is widely distributed in India, Nepal, Sri Lanka, and 
Myanmar. The female of S. sarasinorum is nearly 1  cm and the 
male is nearly 0.5  cm (excluding the legs). This spider exhibits 
communal predation and feeding [26], where individuals live in large 
cooperatively built nests [27].

N. pilipes is commonly called as Giant Wood Spider. The female is 35–
45 mm and the male is about 2–4 mm. It is distributed widely in East 
and Southeast Asia as well as Oceania [28]. These spiders construct 
gigantic orb webs, often reaching a length of 1.5–2 m in diameter. The 
males usually die soon after mating [29].

2.2. Hemolymph Collection
Permission was obtained from Periyar University Departmental 
Animal Ethical Committee before the collection of spiders 
hemolymph. These spiders were collected from the nearby scrub 
land and reared in cages under laboratory conditions. They were fed 
with insects such as grasshoppers, katydids, moths, and mosquitoes 
for 10  days before the hemolymph extraction. These spiders were 
narcotized with 70% ethanol, then, their fourth walking leg was 
separated from the coxa. The flowing whitish-brown hemolymph 
was collected with micropipettes as per Yigit and Benl, [8]. Nearly, 
10 µL of hemolymph was obtained from each spider. The hemolymph 
is diluted in the range of 1/1 with insect saline solution (insect saline 
solution: 1.80 g NaCl, 1.88 g KCl, 0.16 g CaCl2, 0.004 g NaHCO3, 
and 100 mL distilled water).

2.3. Determination of Antimicrobial Potential
The antimicrobial activity of resultant hemolymph – saline solution 
mixture was tested against ten different pathogenic bacterial strains 
such as S. aureus, Pseudomonas aeruginosa, Staphylococcus 
epidermidis, Streptococcus agalactiae, Staphylococcus hominis, 
Streptococcus pneumoniae, Klebsiella pneumonia, Staphylococcus 
saprophyticus, Salmonella spp., and Shigella spp. The strains were 
inoculated in Mueller–Hinton broth (MHB) (Merck) and incubated at 
37°C for 24 h.

The antimicrobial potential was evaluated by the agar well diffusion 
method [30]. The bacterial culture medium was prepared by suspending 
38 g of Muller–Hinton agar medium in 1 L of water. After sterilization, 
the media was poured into sterile glass Petri dishes followed by 
inoculation of 100 µL of the culture broth. The hemolymph-saline 
solution mixture was poured in one well of each agar plate containing 
microorganisms and incubated at 37°C for 24 h. The rest of the wells 
were loaded with gentamicin and saline solution for positive and 
negative control, respectively. The antagonistic activity of hemolymph 
was measured in mm called as zone of inhibition (ZI).

2.4. Minimum Inhibitory Concentration (MIC)
MIC was determined by broth dilution method [31]. About 
0–120 µL/mL of hemolymph – saline solution was incubated in the 
pathogen inoculated broth for 24 h at 37°C. The conventional 96-well 
plates with MHB with different concentrations of hemolymph, against 
pathogens were incubated to find out the MIC. The MIC values were 
calculated to identify the lowest concentration of the extract that inhibits 
the growth of the pathogens [32,33]. After incubation, absorbance was 
measured at 595 nm using a microplate reader (Bio-Rad).

2.5. Electrophoretic Analysis of the Hemolymph Proteins
The protein profile of the hemolymph bands was analyzed by 
electrophoresis with continuous gradient 15% (w/v) polyacrylamide 
gels under reducing and non-reducing conditions following 
Laemmli [34]. They were visualized with the aid of Coomassie 
blue R-250 staining protocol [35] in Sodium dodecyl-sulfate 
(SDS) polyacrylamide gel electrophoresis (PAGE) [34,36,37]. The 
electrophoresis was carried out at a constant voltage of 100 V for 3 h. 
In these analyses, a hemolymph pool from 20 spiders of S. sarasinorum 
and N. pilipes were used. The molecular mass markers were acquired 
from Sigma (Sigma Aldrich, USA).

2.6. Quantification of Total Hemolymph Proteins
A total of 60 µL clear supernatant mixture of hemolymph-saline 
solution (1:1 ratio) was inoculated by dye-binding method of 

Figure 1: The maximum Zone of Inhibition formed due to the antibacterial 
activities of the colonial spider (a). Stegodyphus sarasinorum against 

Streptococcus pneumoniae and Golden orb web spider (b). Nephila pilipes 
hemolymph extract against Staphylococcus aureus.

a b

Figure 2: Effect of antimicrobial activities of spiders hemolymph against 
pathogenic bacteria.
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Bradford (1976) with bovine serum albumin (BSA) as control. The 
total protein content of hemolymph was represented in mg/mL. The 
quantification was done using a spectrophotometer at 595 nm (UNICO 
Spectrophotometer, SP2100 UV, China) [38].

3. RESULTS

The hemolymph of S. sarasinorum demonstrated remarkable 
antibacterial activity against eight out of ten pathogenic test organisms. 
The maximum and minimum ZI obtained were against S. pneumoniae 
(15 mm) and S. agalactiae (1.5 mm), respectively, while the hemolymph 
of N. pilipes exhibited antimicrobial activity against five out of ten test 
organisms, with the maximum and minimum ZI in S. aureus (10.5 mm) 
and S. epidermidis (5 mm), respectively [Figure 1]. There is a significant 
difference observed between the ZI formed by S. sarasinorum and N. 
pilipes [Figure 2] (F2, 27 = 19.41, P = 0.0001).

The antibacterial activities of the hemolymph extract were identified 
against the test pathogens as S. aureus. Among the test bacteria, 
the MIC was 325  µg/mL for S. aureus. The protein content was 
determined using a standard curve prepared based on BSA with a 
Bradford Coomassie blue method the linear equation between protein 
content and absorption value was y = 0.021× + 0.118, R2 = 0.932 for 
S. sarasinorum, and y = 0.032× + 0.077, R² = 0.974 for N. pilipes 
[Figure 3]. The protein quantified in N. pilipes and S. sarasinorum was 
91.8 µg/mL and 16.10 µg/mL, respectively.

The protein profile of S. sarasinorum and N. pilipes hemolymph 
reveals that they are rich in several electrophoretic mobility-associated 

protein bands, ranging between 15 kDa and 200 kDa. The dominant 
bands in the protein profile of S. sarasinorum and N. pilipes were in 
the range of 60–100 kDa and 50–120 kDa respectively [Figure 4].

4. DISCUSSION

In this study, antimicrobial activities of S. sarasinorum and N. pilipes’s 
hemolymph were tested against ten pathogenic microbes. Our 
analysis showed that S. sarasinorum showed antimicrobial activity 
against eight pathogenic bacteria, whereas N. pilipes showed 
antimicrobial activity against five pathogenic bacteria. This showed 
that S. sarasinorum AMPs have wide spectrum antimicrobial activity 
compared to the hemolymph AMPs of N. pilipes. Hemolymph of 
S. sarasinorum showed the maximum (ZI) against the pathogenic 
bacterium S. pneumoniae, while the hemolymph of N. pilipes exhibited 
maximum ZI against the pathogenic bacterium S. aureus (10.5 mm). 
Similarly, Yigit and Benli [8] reported that the hemolymph of the 
spider A. labyrinthica showed antimicrobial activity against five out 
of ten pathogenic bacteria. This showed that our two species of spiders 
hemolymph showed promising antimicrobial activities. Further, this 
also revealed that antimicrobial activity of spiders hemolymph vary 
between the species. The hemolymph of Lasiodora sp. exhibited 
antagonistic behavior against Enterococcus faecalis and Bacillus 
subtilis with MIC of 3400 µg/mL [39]. While, in our study, the growth 
of S. aureus was inhibited at MIC of 325 µg/mL of S. sarasinorum 
hemolymph. The MIC of Gomesin purified from Acanthocurria 
gomesiana’s hemolymph against a wide range of bacteria, fungi and 
eukaryotic cells represent their effective antagonistic nature [25]. Not 
only the antibacterial peptides, even an effective antifungal peptide, 
have been isolated from the hemolymph of A. rondoniae [25]. 
However, we analyze only the antibacterial properties of the spider 
hemolymph.

In the present study, the protein profile of S. sarasinorum and N. 
pilipes hemolymph reveals that they are rich in several electrophoretic 
mobility-associated protein bands, ranges between 15 kDa and 200 
kDa. Our findings corroborate with the analysis of hemolymph of 
other spider species such as Nephila inaurata [40], Cupiennus salei, 
Eurypelmacali fornicum, and Eurypelma helluo [41]. Similarly, Jalal 
[42] analyzed hemolymph of ten species of spiders in citrus orchard 
and found 200 kDa and 60 kDa bands in all species of spiders.

This study demonstrated that the hemolymph of S. sarasinorum and 
N. pilipes was effective against most of the tested pathogenic bacteria. 
Consequently, to develop effective new drugs against antibiotic-
resistant microorganisms, the hemolymph of spiders may be used as 
a potentially new source of natural antibacterial agents. The protein 
profile of the hemolymph has been studied. However, the active AMPs 
from the hemolymph need to be isolated and purified for further 
studies.

5. CONCLUSION

We reported the antimicrobial activities of hemolymph of two species 
of spiders S. sarasinorum and N. pilipes. In this study, S. sarasinorum 
showed antimicrobial activity against eight pathogenic bacteria and 
N. pilipes against five. This study clearly portrays the wide spectrum 
antimicrobial activity of S. sarasinorum hemolymph. Further, we 
estimated the molecular weight of the hemolymph proteins and isolated 
them with SDS PAGE. The protein profile of hemolymph revealed that 
their dominant band in the range of 60–100  kDa in S. sarasinorum 
and 50–120  kDa in N. pilipes. Further studies regarding separation 
of active AMPs from the hemolymph need to be done for the future 

Figure 3: Quantification of total hemolymph proteins in bovine serum 
albumin (a). Stegodyphus sarasinorum and (b). Nephila pilipes.

a b

Figure 4: The analysis of proteins in the hemolymph of different spider 
species using 15% SDS-PAGE – (a) Stegodyphus sarasinorum and  

(b) Nephila pilipes.

ba
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studies. Studies of AMPs produce novel perspectives on pathogenicity 
and provide new perspectives on the interrelations between pathogens 
and their hosts. This study will serve as the foundation for our future 
research on enhanced purification, protein type characterization, and 
the action mechanisms of their active ingredients into the molecular 
pathways will be highly beneficial in the development of novel 
medications that utilize spider hemolymph.
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