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ABSTRACT

Tuberculosis (TB) is the second largest infectious airborne disease that mostly affects the lungs and leads to damage 
to the respiratory system. There are mainly four factors susceptibility, exposure, infectiousness, and environment 
which determine the probability of transmission through Mycobacterium tuberculosis (MTB), a TB-causing 
pathogenic bacteria. To develop the antibiotic for the treatment of TB, two-component systems (TCSs) were mostly 
considered important targets. The mostly known TCS for MTB is MtrAB, which is present in all mycobacterial 
species. In this study, we applied network theory-based methods, using MtrAB protein-protein interactions, and 
identified potential drug targets for MTB. The constructed network showed hierarchical behavior having modules 
organization that performed a particular function. During our analysis, we found Rv1364c, regX3, gltB, dosT, and 
devS as five key regulators. The regX3 was found to be an important key regulator and showed interaction with other 
hubs. In addition, we also identified regX3, MtrA, MtrB, and Rv1364c formed four nodes motif in which regX3 
regulates MtrA protein through MtrB and Rv1364c, which can be crucial for the network. The hub removal analysis 
showed that gltB is a key regulator mainly in communicating the signals. Furthermore, MtrA was not present in any 
of the identified modules, which suggested it is indirectly related to the modules function and also, possesses the 
potential to cross-talk between the modules through hubs. In the future, the development of a common drug target 
against regX3 and Rv1364c proteins could be a potential therapeutic cure for TB.

1. INTRODUCTION

The Mycobacterium tuberculosis (MTB) bacterium causes TB. Recently 
in 2020, 1.3 million people died from Tuberculosis (TB) disease. The 
effects of TB are observed in different age groups worldwide, mostly 
in young, adults, and people living in developing countries [1]. In past 
years, various antibiotics drugs utilized to treat, and fight against TB, 
but some strains have become resistant to drugs [2]. TB is challenging 
to diagnose using clinical, radiologic, bacteriological, and histological 
methods [3]. At present, the treatment of TB patients relies on clinical 
and laboratory evaluations, which have a number of limitations; the 
standardized methods do not account the individual variability in 
pathogenesis of MTB [4]. TB is treatable and curable but the fatality 
rate can be reduced only if we identify the potential drug targets where 
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a bacterium is failed to develop resistance to the novel drug. The future 
treatment of TB patients may be improved using many systems biology 
domains. Next-generation sequencing and whole-genome sequencing 
methods provides a diagnostic role for treating patients with the 
disease [5,6]. Pharmacokinetic and pharmacodynamic techniques 
combined with systems biology have the potential to highlight the issues. 
Our understanding of the route of action of antibiotics is incorporated 
into systems pharmacology-based pharmacodynamic models to predict 
antibiotic effects on bacteria, for example, drug-target interactions [7]. 
High-throughput gene expression data made it possible to create large-
scale gene regulatory networks. Gene regulatory networks provide 
as closer look to the clinical and medical application and can be seen 
as a bottleneck between the genotype and the phenotypes. Hence, it 
is important to understand the communication that occurs within 
MTB itself and with the host through molecular interaction. Two-
component systems (TCSs) play an important role in bacteria which 
is ubiquitous and also important for cell signaling processes such as 
cell communications and cell adaptations [8]. The absence of TCS 
proteins in humans and other mammals’ cellular systems makes them 
important drug targets potential. MTB has 11 pairs of TCS to perform 
its regular function and they are potentially attractive drug targets [9]. 
Understanding the pathways affected by these systems would unfurl 
effective measures for preventing MTB multiplications that ultimately 
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result in pathogenesis. The MtrAB system is one of the two essential 
TCS in MTB, wherein MtrB is the sensor kinase, and MtrA is the 
cognate response regulator [10]. The MtrAB system is associated with 
replication, cell division, and cell wall formation. The MtrAB system 
is available in all mycobacterial species but is essential in MTB only 
for viability [10,11]. The virulence and infection mechanisms of MTB 
require signal transduction and one of the key biological processes 
is protein-protein interaction (PPI), which is a tool to analyze signal 
transduction.

The system biology approach using PPIs provided the key to 
understanding complex biological systems and helps to understand the 
importance of key regulators [12]. The network theory-based analysis 
helps to understand the topological properties of complex systems [13]. 
The modules in the hierarchical network are of particular interest 
because modules many correspond to independent functions [14,15]. 
The hub protein controls the stability of the network as well as 
modules [16-18]. Hence, the interaction between the hub and modules 
is crucial for network stability and communication. It was pertinent, 
therefore, to understand the communication within MTB and with its 
host based on MtrAB using a network biology approach.

2. METHODS

2.1. Construction and Statistical Analysis of MtrAB PPI 
Network
The PPIN of MtrA and MtrB genes was constructed using the STRING 
(Szklarczyk et al., 2019) database. The PPI information of MtrAB 
proteins in MTB was retrieved with the minimum required interaction 
score of 0.4. Here, the interaction contains both known and predicted 
PPIs, which are physical and functional interactions with confidence 
scores. These interactions are the bases to construct the network, so to 
obtain reliability; we used a medium confidence score. The duplicate 
interactions were removed from the interaction table and imported to 
the Cytoscape [19] to visualize the network.

2.2. Analysis of Statistical Parameters of MtrAB-PPI Network
To understand the topological behavior and importance of the key nodes, 
we used different statistical parameters such as degree distribution 
(P(k)), clustering coefficient C(k), neighborhood connectivity CN (k), 
and closeness centrality (Cc) using Network Analyzer a Cytoscape 
plugin [20].

Degree (K) and (P(k)).

Degree (K) denotes the number of interactions of a particular node 
with other nodes present in a network. The higher degree of nodes 
helps to identify the central nodes of the network which were further 
considered as hubs [21]. It can be determined by (Eq. 1).

   P k N
N
k( ) =  (1)

Where Nk denotes the total number of nodes having k degree whereas 
N denotes a node. The behavior of the networks can be categorized 
as random, small-world, scale-free, and hierarchical. In the small-
world and random networks, the maximum number of nodes has a 
similar degree followed the poison distribution law, whereas, in scale-
free networks, fewer nodes have a larger degree and followed power-
law distribution P (k)~ k-γ. The γ values define the network nature 
and mode of organization of nodes. (i) if γ is 2≥ γ ≤3, larger degree 
nodes hold lesser degree nodes and the larger number of separated 
distributed nodes together, (ii) if γ ≤ 2, showed the importance of 

consisted functional modules, a hierarchical nature, and (iii) if γ > 3 no 
relationship between the nodes losing scale-free topology [22].

Neighborhood connectivity CN (k).

Using the topological property CN (k), we can identify the relative 
mode of connectivity between interacting neighboring nodes and it 
can be determined (Eq. 2)

  C k qP q kN
q

( ) =∑ ( | )  (2)

where P(q│k) denotes the conditional probability to generate and 
create connections with nodes consisting of degree (k) to another node 
with degree q. [23]. For scale-free network topology, the value of CN 
(k) is constant, whereas CN (k) followed power law distribution, that is, 
CN (k)~kβ, where, β ~ 0.5 in hierarchical behavior.

Clustering coefficient C(k).

It indicates the extent to which internal connections between a node’s 
neighborhood can be formed, the strength of connections, and cluster 
organization. For any single node, it can be determined using the 
equation C(ki) = 2mi/ki (ki-1) where mi represent all of the links to its 
nearest neighbors. For scale-free and random networks, the value of 
C(k) is constant [24] means it is independent of k but in the case of a 
hierarchical network, it is dependent on a value of C(k)∼k-α where α 
∼ 1 [25].

Closeness centrality (Cc).

It can be determined by calculating the “shortest path lengths” between 
nodes presented in a network. It is the reciprocal of farness and can be 
calculated by (Eq.3)

   

( )
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ijj
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where, dij is the sum of all the shortest distance between pair of nodes 
i and j, whereas N is the nodes present in the network. A node’s (CC) 
the value indicates how well it can transmit information throughout the 
network; a low value indicates its capacity to receive information faster.

2.3. Identification of the Nodes Highly Regulating mtrAB 
Network
According to the hypothesis, proteins with a large number of 
interacting partners in their network generally serve crucial roles in 
cells and showed their essentiality. In the constructed network, the 
proteins with high degrees interact with many other proteins and 
represented a key regulator of the network. In this study, we used a 
network analyzer [20] to identify the hub proteins’ communication 
with many other significant proteins. Removal of hubs (higher degree 
proteins) may change the structural properties or stability in the 
network called the centrality-lethality rule [21]. In our analysis, we 
observed the network organization in the absence of higher degree 
nodes having large modules interactions one at a time, we considered 
the betweenness centrality (BC) parameter to re-analyze the rearranged 
network to measure regulating capacities of key nodes.

2.4. Module Construction and its Association with Hubs
To identify the number of clusters/modules (highly connected nodes 
or clusters of interactions) in the Mtrab PPIN, we used MCODE [26], 
a module prediction tool that identified the clusters consist of larger 
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interconnections between nodes. The algorithm uses a three-stage process: 
(i) Weighting: The nodes with the most linked neighbors receive a higher 
score. (ii) Molecular complex prediction: Recursively add nodes to the 
complex that are over a specified threshold, starting with the highest-
weighted node (seed). (iii) Post-processing: Filters are applied to increase 
cluster quality (haircut and fluff). We used default parameter values of 
MCODE, node score cutoff (0.2), haircut, node density cutoff (0.1), 
K-score (2), maximum depth (100). To construct high-scoring modules 
in the network, we used the following default parameters of MCODE 
Cytoscape plugin. Here, we considered the top five modules that consist 
highest M-score. The identified hubs showed different interactions with a 
module, which further considered crucial nodes of the network.

2.5. Gene Ontology Enrichment Analysis of Modules
To understand the biological importance of functional modules, we 
annotated modules functions using the PANTHER tool. It combines 
gene-related information, such as gene function and cellular location to 
identify the gene annotation [27]. This tool provides a comprehensive 
set of efficient and concise annotations to the various genes and can 
categorize the terms as molecular functions, biological process (BP), 
and cellular components (CC).

3. RESULTS AND DISCUSSION

3.1. MtrA and MtrB Proteins in M. tuberculosis Strongly 
Regulated by Rv1364c
After the removal of duplicity in the genes, we constructed the two key 
proteins (MtrA and MtrB) in MTB, a based PPI network. Constructed 
MtrAB-PPIN consisted 909 edges (connections) in between 94 nodes 
(proteins) [Figure 1]. We found five sparsely distributed nodes namely, 
Rv1364c, regX3, devS, dosT, and gltB showed a high strength to 
attract a large number of nodes consists a lesser degree. These five 

proteins showed a high perturbation degree. Since the network is based 
on MtrA and MtrB interacting proteins, we found a degree of 73 and 
51 for MtrB and MtrA, respectively. The key hub protein apart from 
these two (MtrA and MtrB) proteins has a degree of 48, 38, 37, 37, and 
37 for Rv1364c, regX3, devS, dosT, and gltB, respectively. All five 
hub proteins were interacting with MtrB, but four of the hub proteins 
interact with MtrA except regX3.

3.2. Statistical and Topological Behavior of the Network
Based on a statistical analysis of the MtrAB-PPIN, we found network 
followed a power law distribution with degree means fewer nodes 
having a higher degree but a larger number of nodes having a lesser 
degree. The negative exponential value in (P(k)) (γ = −0.35, correlation 
coefficient (r) = 0.37) provides a hierarchical scale-free (presence 
of modules and sparsely distributed hubs) nature to the network 
[Figure 2a] [28]. Both CN (k) and C(k) resulted a negative exponent 
value (β = 53.86 ± 0.23) and (α = 0.96 ± 0.26); with their corresponding 
r values (r = 0.76) and (r = 0.65) and followed power law distribution 
[Figure 2b and c]. The exponential values depicted that MtrAB-PPIN 
consisted of a hierarchical scale-free nature. The MtrAB-PPIN consisted 
of a disassortative behavior means that hubs play important role in 
network stability. To, recognize the signal processing strength of the 
hubs we included closeness centrality (Cc) topological parameter which 
showed that positive exponents value (η =+0.28) with corresponding 
(r = 0.90) indicated the leading hubs controlling the network stability 
with a higher strength [Figure 2d]. The topological and centrality 
parameters resulted from MtrAB-PPIN following a scale-free nature 
with a system level of organization (hierarchical scale-free).

3.3. Nodes Highly Regulating MtrAB Network
To identify the important genes in the network, we performed an 
independent hub-removal (gene knockout) experiment. Removal 

Figure 1: The hub in the protein-protein interaction of the MtrAB network. Expanded view of the network imported from Cytoscape, where nodes represent 
proteins and edge the physical interaction. The hub nodes circle size showed according to the degree (larger to smaller).
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Table 1: Average betweenness centrality values of complete MtrAB-PPIN 
and after the removal of hubs. 

Name of hub-removed Average betweenness centrality (BC)

Complete network 0.009258154

devS 0.009429794

dosT 0.009419519

gltb* 0.87840418

reg×3 0.009468325

Rv1364c 0.009465756

“*” hub showed significant changes in betweenness centrality.

of crucial hubs may change the network properties referred to as 
the centrality-lethality rule [21]. In a hierarchical network, the hubs 
protein is less important as compared to the functional modules of the 
network. When it comes to network control, hubs are not as crucial as 
modules but may involve in the regulatory mechanisms of the network. 
In general, to understand the importance of a hub node remove the 
node from the network and then re-analyze the network’s topological 
properties [29]. Here, we considered the BC parameter which may 
show a significant change. We removed all 5 hubs once at a time and 
re-analyzed them by deleting them from the complete PPI network. 
We found one hub gltB showed significant changes in BC that could 
increase signal propagation capacity in regulating mtrAB [Table 1]. 
The removal of the other four hubs (Rv1364c, regX3, dosT, and devS 
showed a same pattern of the regulation [Figure 3]. Due to the presence 
of modules that provided hierarchical nature to the network and on 
hub removal the network stability is still maintained. Most likely, the 
network’s crosstalk between these hub proteins and functional modules 
aims to preserve the network’s structural characteristics.

3.4. The Modular Structure of the MtrAB Network
The presence of modules in the network provides statistical and 
functional significance to interacting clusters of nodes, which leads to 

the formation of a functional community in the network. We identified 
five such significant modules in the MtrAB network. Here, we 
identified the top five modules based on the MCODE score (M-score). 
The module-1 consisted 16 nodes, 62 edges with a M-scoring of 
8.26 [Figure 4a]. The module-2, 3, 4, and 5 had 23 nodes (scoring 
value 7.90) [Figure 4b], eight nodes (scoring value 4.28) [Figure 4c], 
five nodes (scoring value 3) [Figure 4d], ten nodes (scoring value 
2.88) [Figure 4e] with the corresponding edges of 87, 15, 6, and 
13, respectively. Among five significant hubs, three hubs present in 
module-3 and two hubs present in module-2 showed that the majority 
of the notably large hubs not only controlled their module but also 
influenced other modules to control network regulation. MtrB protein 
is present in module-1, and MtrA was not observed in all five modules, 
which suggested it is indirectly related to modular functionality; with 
a chance to cross-talk between the module through this protein. We 
also found modules were linked with sparsely distributed nodes, 
which provides the possibility of module cross-talk. We identified that 
these modules communicated with one another through the five most 
important hubs in the network.

3.5. Hubs and Modules Interaction in MtrAB Network Proven 
Rv1364c and regX3 are Crucial Proteins
The hub protein can directly cross-talk with the nodes present in modules 
to control the functionality of modules. Rv1364c hub protein showed 
the maximum interacting strength with five modules, followed by gltB, 
dosT, devS, and regX3 suggested that hubs were the key mediators 
of modules [Table 2 and Figure 5]. However, Rv1364c protein is not 
connected with any of the proteins in module-4. The Rv1364c hub 
protein interacted with most of the proteins in module-1, 2, and 3. It 
was identified that increased transcription of a potential sigma factor 
regulatory gene, Rv1364c, occurs, in Mycobacterium bovis (BCG) 
consequent to phagocytosis by macrophage [30]. The regX3 showed 
the fewer interactions with five modules compared to other hubs in the 
network, but they have a high number of interactions with module-5 
compared to other hub proteins. Activated RegX3 limits persister 

Figure 2: The topological and centrality properties of the network represented with correlation coefficient values (r). (a) probability of degree distribution P(k),  
(b) average neighborhood connectivity (CN(k)), (c) average clustering coefficient C(k), (d) closeness centrality (CC). All these properties follow the power law scale.

a b

c d
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Figure 3: The representation of the network property comparison of average 
betweenness centrality (BC) of complete MtrAB-PPIN and after the removal 

of hubs.

formation during growth under phosphate-limiting conditions [31]. Out 
of five hubs, two hub proteins did not connect with module-4 and the other 
three have only one connection each, here MtrB protein interacts with all 
the proteins in module-4. MtrA is not present in any of the modules, they 

interact with all the modules with a total connection of 31 [Figure 5]. 
The increased binding of acetylated MtrA to MtrB is also consistent 
with MtrA’s repressor action, which also keeps the protein together and 
available for prompt switching if necessary [32]. We found that Rv1364c 
regulates one cluster of nodes (module1, 2, and 3), and regX3 hub along 
with MtrA and MtrB protein regulated module-4 and modules-5. The 
relationship between hubs and modules suggested that hubs also have 
capabilities to regulate the functionality of modules, stability, and signal 
processing in the network. The identified five modules observed in the 
network provided the hierarchical nature and hub interacting proteins 
were highlighted. It was clear that these five modules served as the 
MtrAB network’s primary controller and regulator. The important two 
hubs (Rv1364c and regX3) in MtrAB network play significant roles 
through their interaction with two clusters of modules and these two 
hubs could preserve the stability of the network, information processing. 
All the five hubs, including MtrB protein present in module-1, 2, and 3 
were identified as the most influencing nodes having stronger cross-talk 
in between the modules that interact with it. MtrA protein, absent in all 
five modules, but provide a link to cross-talk among the modules and 
their functions.

Figure 4: Structure of the modules in the MtrAB network. MCODE tool used to construct the modules. In the modules 1-5 (a-e) all the nodes are in filled circles 
with the corresponding edges in lines.

a

c d

b

e
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Table 2: The total number of nodes and the number of interactions in modules with five hubs.

Hub interaction networks Module-1 Module-2 Module-3 Module-4 Module-5 Total

devS 12 11 3 1 1 28

dosT 13 11 3 1 1 29

gltB 11 15 1 0 3 30

regX3 8 9 2 1 4 24

Rv1364c 12 17 7 0 2 38

Number of nodes 16 23 8 5 10 62

3.6. Modules Functional Enrichment
We identified that module-1, 2, 3, 4, and 5 were functionally associated 
with catalytic activity [Figure 6]. Module-4 proteins showed 100% of 
functional enrichment with catalytic activity. Module-1, 2, and 3 also 
showed enrichment with molecular transducer activity. Apart from 
those modules 1 and 2 were functionally related to binding activities. 
Module-5 showed maximum enrichment of binding function as 
compared to other modules. All five modules are associated with 
biological cellular and metabolic processes but mostly with cellular 
processes. These proteins are mostly found to be localized in a protein 
complex, cellular anatomical entity, and intracellular. The proteins of 
module-4 showed 100% ofenrichment as cellular anatomical entities. 

Module-1 and module-3 proteins showed 50% of enrichment as 
cellular and another 50% as metabolic processes. Module-2, 4, and 5 
also showed an association with response to stimuli BP 6.3%, 4.3%, 
and 18.2%, respectively [Figure 6].

4. DISCUSSION

Network system biology approach helps us to understand the disease 
biology, such disease pathogenesis, identification of potential 
biomarkers, drug targets, drug dosages, designing of therapeutic 
interventions, and synergism discovery [33]. A rapidly expanding 
area of computational and quantitative research, systems biology 
integrates a number of disciplines, including microbiome profiling, 

Figure 5: Cross-talk among the five modules and MtrA hub in the network. MtrA protein interacts with all the modules and hub-interacting nodes were connected 
via its edges.
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Figure 6: Functional annotation of five modules. The enrichment analysis in terms of molecular function, biological process, and cellular component shown with 
percentage represent the function hits of genes.
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transcriptomics, proteomics, metabolomics, and genomics. In recent 
years, systems biology studies have been increasingly implemented 
in TB research to identify biomarkers and key targets that can showed 
changes in pathogen viability or its susceptibility to antituberculosis 
drugs, elucidate host signaling in response to the pathogen, and 
predict treatment response [4]. Network based systems biology study 
revealed diseasome and comorbidity associations of systemic sclerosis 
with different type of cancers [34]. Recent study on congenital heart 
diseases (CHDs) network regulating heart development and observed 
that a sub-network also regulates fetal brain development, thereby 
providing mechanistic insights into the clinical comorbidities between 
CHDs and neurodevelopmental conditions [35].

In this study, to unravel the signaling challenges associated with 
MTB, we applied a systems biology approach. Here, we analyzed 
the constructed PPI network of 94 proteins based on two key proteins 
(MtrA and MtrB) in MTB. The network analysis results suggested that 
Rv1364c and regX3 functions as key regulators of the MtrAB network, 
and both were regulating two modules observed in the network. Out of 
five key hubs of the network; Rv1364c was found as a major hub. The 
hub-module interactions showed Rv1364c and regX3 as key proteins, 
which regulated the network. Among the five hubs, regX3 is the only 
protein that interacts with other hubs. The connection among Rv1364c, 
regX3, and MtrB could be a critical three-node motif of the network.

5. CONCLUSION

The modeling and analysis of molecular interaction networks (MINs) 
could represent valuable resources in defining associated pathways 
and discovering novel therapeutic targets. Within living organisms, 
a single protein or other biomolecules will rarely act alone to effect 
a given function. Instead, there is a complex series of interactions 
between multiple biomolecules that contributes to a BP. Studying the 
structure and topology of MINs can help to identify biomolecules that 
are involved in biological processes and elucidate which biomolecules 
or processes are dysfunctional in disease.

PPINs have been developed for many different organisms, such as 
bacteriophages, yeast, bacteria, plants, animals, and human [36]. 
Recent developments in biomedical research have benefited greatly 
from PPIN and its uses because it is a useful index to measure their 
centrality and offer a benchmark for proteins as potential therapeutic 
targets. Therefore, PPINs become an effective method to understand 
the complex disease systems like cancer [37], multiple sclerosis [38], 
and Alzheimer’s disease [39]. A basic aspect of network biology is that 
proteins implicated in the same disease have a propensity to interact 
with one another and form disease modules.

To comprehend the etiology of diseases and explain the penetrance 
and expressivity, it is helpful to study disease modules and provide an 
idea to the drug target of gene therapy and determines or specifies new 
disease and drug-protein targets.
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