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ABSTRACT

Arsenic is a toxic metalloid naturally found in the earth’s crust and released into the environment through natural 
and anthropogenic activities. Arsenic becomes exceptionally toxic even at low exposure levels because of its 
high water solubility and bioaccumulation tendency in different environmental matrices. Crops receiving arsenic 
contaminated irrigation water accumulate it in different degrees depending on the species and variety. Consumption 
of contaminated crops and drinking water has been identified as important routes for its transfer into the food chain. 
Besides, consuming seafood and livestock-based food products such as meat and milk from arsenic endemic regions 
also contributes to the food chain transfer and contamination. The literature clearly indicates that the toxic effect of 
arsenic in any food product is highly dependent on its chemical speciation. Inorganic arsenic compounds are generally 
more toxic than organic forms. On consumption of contaminated food products and water, only the bioavailable form 
of arsenic goes directly into human body and interferes with different metabolic pathways. Thus, prolonged arsenic 
toxicity leads to carcinogenic and non-carcinogenic health risks such as arsenicosis, cancers, hepatotoxicity, kidney 
failure, and skin diseases. Therefore, this review highlights the distribution and mobility of arsenic in soil-plant 
system, its bioavailability in plant and livestock-based food products, arsenic transfer into the food chain, and human 
health risks. In the current state when arsenic has emerged as a worldwide threat, an integrated strategy is urgently 
required to combat arsenic contamination, mandating the creation of national and international action strategies for 
arsenic contamination mitigation.

1. INTRODUCTION

Urbanization and industrialization are the chief routes of human 
development in multiple ways today. However, contaminants generated 
by anthropogenic activities and some natural incidences have endlessly 
polluted the environment. Arsenic is naturally found in the earth’s crust 
and is extensively distributed in various components of the environment. 
It has a 74.9 g/mol atomic weight, 5.73 g cm-3 specific gravity, and a 
boiling and melting point of 614°C and 817°C, respectively [1]. It is 
a firm, breakable crystalline solid with a silver-grey color [1]. Its high 
industrial value makes it inevitable to circumvent living in an arsenic-
free environment. It is used in making semiconductors, herbicides, 
pesticides, fertilizers, paints, cosmetics, glass industry, fireworks, 
ammunition, etc. [2]. The International Agency for Research on Cancer 
has classified inorganic arsenic as a Group 1 carcinogen [3], and Agency 
for Toxic Substances and Disease Registry has considered it as genotoxic, 
neurotoxic, and embryotoxic with a half-life (plasma) of 3–4 h [4].
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Soil health is essential as it is directly linked to food security, affecting 
plant growth, productivity, and human health. Soil-bound arsenic in 
the agroecosystems is transferred to the edible parts of crop plants 
through natural mineral uptake mechanism. However, prolonged 
consumption of such contaminated crops may pose health risks to the 
human population [5,6]. Another route for arsenic in the human body 
through the food chain is the intake of contaminated drinking water [7], 
consumption of seafood [8], and livestock-based products [9]. Food 
products such as milk, meat, eggs, fish, and other dairy and poultry 
products produced by animals feeding on arsenic contaminated crops 
and water or thriving in the arsenic contaminated environment could 
be another source of food chain contamination [10,11].

Arsenic toxicity in humans leads to multiple health risks such as skin 
disorders, cancers, melanosis, hyperkeratosis, lung disease, peripheral 
vascular diseases, gangrene, diabetes mellitus, hypertension, and 
ischemic heart disease [12,13]. Moreover, chronic exposure to 
inorganic arsenic increases the risk of diabetes mellitus, adverse 
pregnancy outcomes, and even skin cancers, lungs, and urinary 
bladder [14].

Therefore, it is crucial to focus on averting an increase in arsenic 
contamination in the food chain and exploring the novel methods to 
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reduce it. Hence, the present study highlights the bioaccumulation of 
arsenic in soil and water and its subsequent transfer into the crop plants, 
including cereals, vegetables, seafood along with livestock-based food 
products, namely, milk, meat, and eggs. It emphasizes on food chain 
contamination and further outlines various health risks and disorders 
due to chronic arsenic toxicity. The study reflects the directions 
for future that may be helpful for global scientific communities, 
stakeholders, and policy makers to mitigate the arsenic contamination.

2. BIOAVAILABILITY AND MOBILITY OF ARSENIC IN 
SOIL-PLANT SYSTEM

Different soils have varying levels of arsenic depending on the parent 
material; in most cases, the baseline of arsenic in agricultural soils may 
range from 5 to 10 mg/kg soil [15]. However, agricultural soil quality is 
compromised by the escalation of urban and industrial activities globally. 
Arsenic is chiefly present as As(III) and As(V) in nature. The other main 
species of arsenic in natural environments include monomethylarsonite 
(MMA(III)), monomethylarsonate (MMA(V)), dimethyl arsenite 
(DMA(III)), dimethyl arsinate (DMA(V)), arsenocholine, arsenosugars, 
arsenobetaine, trimethylarsine oxide, and tetramethylarsonium ions [16]. 
Furthermore, the As(III)) has been found more toxic, mobile and soluble 
than organic arsenic because these can efficiently react with sulfhydryl 
(–SH) groups of different proteins and restrict the cellular functions that 
ultimately lead to the death of cells [17].

The mobility and transformation of arsenic in soil are determined 
by multiple factors such as its oxidation states, soil texture, and 
iron oxides [18], sorption desorption processes [19], soil pH [20], 
organic matter and metallic elements [21], redox potential and organic 
acids [22], oxic anoxic conditions [23], and microbial species [24]. 
Microbial species augment the interconversion of As(III) and As(VI) 
by solubilizing or immobilizing arsenic in the soil-plant system [25]. 
Arsenic dynamics in the soil-cabbage system showed that iron oxides 
increased arsenic mobilization in soil [18]. In contrast, aluminum 
oxides contributed strongly to the immobilization of arsenic. Moreover, 
an increased sand content promoted the mobility of arsenic, whereas 
increased silt and clay contents showed inhibitory effects [18]. These 
biotic and abiotic factors alter the biogeochemistry of arsenic in soil-
plant system, making it bioavailable to the crop plants. The mechanism 
of arsenic uptake by plants varies with the chemical speciation. It has 
been reported that As(V) uses inorganic Phosphate (Pi) channels for its 
entry into the plant cell [26]. On the other hand, plants uptake As(III) 
via various nodulin-26-like intrinsic proteins and silicon transporters 
due to analogous chemical structures [27]. Most arsenic typically ends 
up in plants’ vacuolar compartments, whether in the root or shoot tissue. 
Arsenic is transported and accumulated to the next level consumer; 
prolonged consumption of such crops poses numerous health hazards.

3. BIOAVAILABILITY AND MOBILITY OF ARSENIC IN 
WATER

Chronic arsenic poisoning caused by drinking water is considered 
one of the world’s biggest environmental disasters recorded in 
the last century [28]. Water sources get contaminated either by 
natural processes or through anthropogenic activities. Natural 
processes include the leaching of minerals, the interaction of rocks 
with water, groundwater movement, geothermal activities, and 
mineralization [29]. The leaching of arsenic from aquifers depends on 
the geochemical characteristics of groundwater and arsenic speciation. 
In groundwater, As(V) is predominant in oxic environments, with 
significant forms of H3AsO4, H2AsO4, HAsO42-, and AsO4

3−, whereas, 

As(III) is more dominant in anoxic environments, with H3AsO3, 
H2AsO3, and HAsO3

2− being the common species [30]. Higher organic 
contents and alkaline conditions in groundwater and aquifers could 
also enhance the release of arsenic into groundwater [21,31]. Geogenic 
arsenic-contaminated groundwater has become a matter of concern in 
the Ganga delta region, especially for the human population living 
in India and Bangladesh [32]. Chakraborti et al. [7] reported health 
risks to more than 10 million Indians in the Ganga delta region from 
fluoride and arsenic due to dependency on groundwater resources. 
However, anthropogenic activities, including domestic and industrial 
effluent discharge, agricultural runoff, leaching of agrochemicals, coal 
power plants, smelting and mining activities [33] also contaminate 
the water resources. Besides drinking water, aquatic life thriving in 
arsenic-contaminated water resources also tends to accumulate in their 
organs. Many researchers have reported high arsenic concentrations 
in fish, crabs, eels, and other aquatic animals used as seafood [34,35].

4. ARSENIC ACCUMULATION IN CROPS

4.1. In Cereal Grains
Arsenic is a highly toxic metalloid and widely distributed contaminant 
in the food chain. Because of plants’ innate ability to uptake minerals 
from the soils, food crops such as cereals and vegetables have been 
regarded as important channels for arsenic exposure in humans. 
Arsenic contamination in cereals due to geogenic and anthropogenic 
sources has been reported in numerous studies [6,36] [Table 1]. Rice 
has a high arsenic accumulation efficiency than any other cereal due 
to anaerobic conditions that promote its mobilization and uptake 
by the rice plant [37]. Mining and smelting activities in China have 
contaminated paddy soils, resulting in high arsenic bioaccumulation 
in rice grains [38]. Besides, extensive and prolonged use of arsenic-
based fertilizers and pesticides also contribute as a source of arsenic 
in agroecosystems [39]. Other factors that influence the arsenic 
content in rice include rice grain processing [40], rice variety [41], the 
region where it is grown [42], irrigation method [43], and the cooking 
method [44]. Arsenic contamination of the soil–wheat system has been 
documented as a result of excessive arsenic levels in groundwater used 
for irrigation in China [45]. In another study, high levels of arsenic in 
wheat grain (27 µg/kg) were reported from geo-genically contaminated 
areas of the mid-Gangetic plain of Bihar, India [46].

Food chain transfer of arsenic affects crop quality and productivity, 
threatening food security and further compromising human health. 
Prolonged consumption of such crops affects the health and wellness of 
human beings; moreover, such crops are not considered fit for export. 
Another study from the same region, Bihar, reported total arsenic in 
wheat grains (43.64 µg/kg) with a lifetime cancer risk (1.23 × 10−4), 
much higher than set by USEPA regulatory range (10−4–10−6) [10] for 
the rural population due to wheat consumption grown in that region. 
Since Bihar exports wheat across the country, arsenic exposure through 
wheat-based food consumption may occur in the non-endemic areas 
of the country with a similar wheat-based diet [10]. The other factors 
influencing the arsenic accumulation and bioavailability in wheat crop 
include, the wheat variety [47], industrial and mining activities [48], 
wastewater irrigation and sludge application [39], coal-fired thermal 
power plants [49], waste dumping in the vicinity of fields, and 
extensive use of agrochemicals [50].

4.2. In Vegetables
Vegetables are an essential component of the human diet; thus, they are 
also an important channel of arsenic exposure to humans. Vegetable 



Singh, et al.: Journal of Applied Biology & Biotechnology 2023;11(4):24-3326

cultivation in arsenic endemic regions threatens food security and human 
health to a greater extent. The arsenic contamination in vegetables 
depends on multiple factors, including the type of vegetable, soil type, 
irrigation water quality, vicinity area, anthropogenic pressure, and 
geogenic contamination [Table 2]. In a study from Samta village, West 
Bengal, India (arsenic endemic region), arsenic levels in vegetables 
surpassed the national and international limits. The contamination in 
vegetables was associated with arsenic-contaminated tube well water 
(0.24 mg/L) used for irrigation [60]. In another study from the mid-
Gangetic plain of Bihar, India, the mean arsenic concentration in the 
vegetables was reported to be very high (452 µg/kg) and in the range 
of 37–3947 µg/kg, due to the geogenic source with some diffused 
anthropogenic activities [46]. The arsenic transfer to the food chain 
via irrigation water (contaminated ground water resources) has been 
well documented. Huq et al. [61] reported that excessive groundwater 
withdrawal for irrigating agricultural fields in Bangladesh has 
contributed to high arsenic levels in surface soils, further leading to 
contamination of crops. Industrial and mining activities also strongly 
influence arsenic availability in different components of environs 
and alter the quality of water, soil, and food crops [62]. Furthermore, 
wastewater irrigation-mediated arsenic food chain transfer is a 
significant pathway, particularly in developing countries with limited 
water resources and inadequate wastewater treatment facilities [52].

The root-to-shoot translocation and accumulation of arsenic species 
differ between plant species and even between the variety of 
cultivars [63]. Arsenic translocation to the above-ground parts of 
the vegetables is generally limited [64] due to various tolerance 
mechanisms developed by plants [65]. Therefore, grains, seeds, lentils, 
and fruits end up with relatively lower levels of arsenic as compared 
to its concentration in roots and other belowground plant organs [66]. 
Overall, root tuber and leafy vegetables accumulate more arsenic 
content than fruity or fleshy vegetables of above-ground parts [67]. 
Due to the tolerance mechanisms, minimum arsenic translocation 
was found in wheat, and maximum tolerance was reported in Brinjal 
(38.80 mg/kg), followed by tomato (35.41mg/kg) [68]. In the xylem 

sap, arsenite predominated in tomato, cucumber, and rice while 
arsenate predominated in castor bean, wheat, and Indian mustard [69]. 
Besides, the external root skin on root vegetables has more arsenic 
concentration than within the root, implying that the washing and 
peeling process for edible tubers such as potatoes and carrot effectively 
reduces exposure for human beings [70]. The differential accumulation/
tolerance ability of crop plants can provide target crops for cultivation 
in arsenic endemic regions with a high tolerance for arsenic, thereby 
reducing the chances of arsenic transfer to the food chain.

5. ARSENIC BIOAVAILABILITY IN MILK, SEAFOOD, 
AND LIVESTOCK-BASED FOOD PRODUCTS

5.1. In Milk
Arsenic-contaminated water and feed for cattle is a well-established 
route of arsenic entry into the food chain. Arsenic is transferred to 
humans via the consumption of milk and meat from such animals. 
It may pose a carcinogenic and non-carcinogenic risk to the health 
of children and adults [11]. Arsenic contamination in milk is of 
particular concern because milk is primarily consumed by infants 
and children [77]. The arsenic concentration in cattle milk depends 
on their feeding habits, food, water, and environmental contamination. 
High arsenic concentration in raw milk (4.24–4.93 µg/L) was reported 
from the cows grazing on pastures near lava ground with high thermal 
activity in Turkey [78]. In a study from Pakistan (Tharparkar region), 
where elevated concentration of arsenic was found in milk samples 
of different milch animals, namely, cows, buffalos, sheep, goats, and 
camels (15.1–18.4, 2.6–7.7, 25.7–33.2, 10.5–37.3, and 6.6–13.7 µg/L, 
respectively) due to the contaminated drinking water (geogenic 
arsenic) given to cattle. A high carcinogenic risk to children was found 
in milk consumption from the said area [11].

According to the WHO recommendations, breastfeeding is essential 
for babies up to 6 months. An additional 2 years of breastfeeding and 
appropriate complementary foods are also much needed [79]. However, 
the composition of human milk is not constant and depends on the 

Table 1: Arsenic in cereal grains (µg/kg).

Country Crop Sample size (n) Arsenic (mean) Arsenic (range) References

China Rice 5 656.00 603–729 Zheng et al.[51]

Pakistan Maise 4 3730.00 1470–3540 Natasha et al.[52]

Wheat 13 2310.00

Malaysia Paddy 9 84.76 Zulkafflee et al.[53]

Bangladesh Rice 35 1370.00 Proshad et al.[54]

Brazil Rice 16 212.00 2–1830 Ng et al.[55]

China Maize 18 90.00 60–260 Cai and Li [38]

Rice 22 130.00

China Wheat 22 417.00 271–991 Zhang et al.[56]

Saudi Arabia Rice 13 0.30 0.1–1 Althobiti et al.[57]

Iran Rice 210 0.16 0.05–0.31 Roya and Ali [58]

Italy Paddy 168 155.00 49–523 Tenni et al.[59]

India Wheat 35 27.00 7.7–108 Kumar et al.[46]

Green g 6 23.00 7.9–49

Maize 31 13.00 4.8–43

Paddy 15 51.00 2.51–132

China Wheat 25 66.90 22.8–154 Tong et al.[45]

China Wheat 75 33.30 6.5–54.9 Shi et al.[48]
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Table 2: Arsenic in vegetables (mean, µg/kg) and their contamination sources.

Country Crop type Source Arsenic References

China Spinach, broccoli, tomato, tine peas Anthropogenic 95.7, 112.0, 107.0, 115.0 Zheng et al.[51]

Pakistan Spinach, mustard, carrot, cabbage, 
fenugreek

Wastewater irrigation 400.0, 390.0, 240.0, 200.0, 190.0 Natasha et al.[52]

Bangladesh Brinjal, potato, bottle gourd, 
pumpkin, green amaranth

Geogenic and anthropogenic 
contamination

350.0, 280.0, 430.0, 320.0, 360.0 Haque et al.[5]

China Lettuce, rape, bitter, mustard, garlic, 
pakchoi

Mine water irrigation 1990.0, 870.0, 3260.0, 3160.0, 1820.0 Qin et al.[62]

Bangladesh Bitter gourd, okra, bean, chilli, bottle 
gourd, cucumber, sponge gourd

Industrial activities 2030.0, 2550.0, 1640.0, 2910.0, 2850.0, 
1640.0, 3890.0

Proshad et al.[54]

Zimbabwe Tomato, okra, onion, pumpkin, 
leaves, spinach

Contaminated soil 600.0, 1000.0, 1300.0, 5200.0, 4030.0 Meck et al.[71]

China Radish, carrot, cabbage, rice, celery Industrial activities 50.0, 20.0, 70.0, 130.0, 110.0 Cai et al.[72]

Brazil Beans, cabbage, carrot, garlic, 
lettuce

Mining activities 50.0, 6.0, 7.0, 13.0, 17.0 Ng et al.[55]

Nigeria White yam, pumpkin, spinach, 
coriander, tomato

Mining activities 100.0, 400.0, 1990.0, 2050.0, 560.0 Obiora et al.[73]

China Spinach, coriander, celery, pea, 
amaranthus

Mining activities 110.0, 340.0, 170.0, 290.0, 280.0 Luo et al.[74]

Pakistan Spinach, coriander Wastewater irrigation 4180.0, 4030.0 Khan et al.[75]

Pakistan Radish, turnip Wastewater irrigation 3370.0, 3510.0 Ahmad et al.[76]

India Luffa, okra, cucumber, brinjal Geogenic contamination 800.0, 375.0, 399.0, 492.0 Kumar et al.[46]

Table 3: Arsenic in milk (mean, µg/L), meat, and egg samples (mean, µg/kg).

Country Sample Source Arsenic References

India Cow milk Geogenic 6.37 Das et al.[86]

Goat milk <3

Brazil Cow milk Gold mine 3.00 Ng et al. [55]

Bangladesh Cow milk Geogenic 440.00 Ahmed et al. [9]

United States Breast milk Geogenic 0.62 Carignan et al. [87]

Taiwan Breast milk Industrial waste incineration and coal power plant in the vicinity 1.50 Chao et al. [88]

United States Breast milk Lifestyle, Contaminated food 0.01 Gaxiola-Robles et al. [89]

Bangladesh Cow milk Chronic as exposure from drinking water 51.0 Islam et al. [90]

Sweden Breast milk Food habits 0.55 Björklund et al.[91]

Japan Breast milk 1.40 Sakamoto et al.[92]

Portugal Breast milk 5.80 Almeida et al.[93]

China Pork meat Anthropogenic 482.00 Zheng et al.[51]

Beef 280.00

Chicken meat 318.00

India Chicken meat Geogenic 94.50 Das et al.[86]

Goat meat 107.00

Eggs 1.00

Brazil Chicken meat Gold mine 21.00 Ng et al.[55]

Beef 21.00

Bangladesh Duck egg Geogenic 76.00

Chicken meat 33.00

Bangladesh Beef Geogenic 570.00 Ahmed et al.[9]

Mutton 140.00

Chicken meat 430.00

Duck meat 160.00
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mother’s nutritional status, diet, lactation stage, socio-demographic 
status, lifestyle, and environmental contamination [80]. The presence 
of geogenic arsenic (50 mg/L) in drinking water contributed to the 
high arsenic (149 mg/L) in the breast milk of lactating women in West 
Bengal, India. Moreover, in the lack of mother’s milk, children were 
further exposed to arsenic from an early age due to their dependency 
on local cattle milk [81]. Newborns absorb metals to a greater extent 
than adults. They have a lower capacity to excrete arsenic compounds 
in the bile, decreasing the body clearance further leading to severe 
consequences of arsenic toxicity [82].

5.2. In Meat and Poultry Products
Meat and poultry products are nutritional diets necessary for human 
growth and development as they contain fat, protein, and other 
essential minerals [83] The use of organo-arsenic drugs as animal 
feed and antiparasitic agents promotes arsenic transfer in cattle and 
poultry products [84]. Roxarsone is an arsenic-containing component 
of chicken feed that supports growth, helps gain weight, improves feed 
utilization efficiency, and increases chicken meat pigmentation [84]. 
However, the elevated level of arsenic observed in different chicken 
tissues was strongly correlated with the use of roxarsone in chicken 
feed in Guangzhou, China [84]. Another study investigated the total 
arsenic in cooked chicken meat samples (3.0 µg/kg) due to roxarsone 
application; arsenic was detected in 50% of samples [85].

Contaminated groundwater has been reported to augment arsenic 
levels in cattle and poultry [Table 3]. High arsenic was reported in 
broiler meat (breast-0.633 mg/kg and liver-0.943 mg/kg) and Cock 
meat (breast meat-0.457 mg/kg and liver-0.379 mg/kg) in poultry 
farms of Bangladesh [95] due to drinking contaminated groundwater. 
In poultry farms, arsenic-rich drinking water and feed additives may 
accumulate a substantial concentration in their flesh and eggs, transfer 
to human beings upon prolonged consumption, and pose a health risk 
to the local population. Moreover, high arsenic levels have been found 
in poultry excreta in Bangladesh. Applying such excreta as fertilizer 

may cause an augmentation of arsenic contamination in soil, leading 
to recontamination of the food chain [96].

5.3. In Seafood
Among the food products, seafood supplies the majority of the 
total arsenic to humans; the US Food and Drug Administration 
indicated that seafood, including finfish, shellfish, seaweed, and 
other seafood, accounts for 90% of the total human arsenic exposure 
globally [8,97]. Seafood is the chief source of organic arsenic, such 
as arsenosugars, arsenobetaine, and arsenolipids [98]. Although 
more toxic form, that is, inorganic arsenic levels in seafood, are 
generally relatively low. But some aquatic organisms, such as 
mussels and algae like Sargassum (a higher alga), can have a high 
concentration of inorganic arsenic [34], which may transfer it to 
the human body upon consumption. Arsenic bioaccumulation and 
transfer in aquatic organisms depend on various biological and 
environmental factors such as arsenic species, organism type and 
species, body size, trophic level, and age [99,100]. For instance, 
arsenobetaine and arsenosugars are the most abundant arsenic 
compounds in finfish and seaweed [8]. The accumulation efficiency 
also varies from organism to organism; Crabs can efficiently 
accumulate the inorganic arsenic compared to finfish due to the 
presence of chitosan in shells containing charged amino acids which 
easily attach with the As(V) [100].

Many researchers have reported high arsenic contamination in seafood 
due to geogenic and anthropogenic sources [Table 4]. For example, 
Perry et al. [35] reported very high arsenic levels (7.3 mg/kg) in the 
crab’s muscles in the Gulf of Mexico. However, according to the 
national standard limit, inorganic arsenic should not exceed 0.5 mg/kg 
for aquatic crustaceans [105]. The population of coastal regions where 
the diet is mainly seafood based are more susceptible to arsenic toxicity. 
High seafood consumption is linked with more elevated arsenic in 
blood and urine [106], infant cord blood and breast milk [107], and 
arsenobetaine and dimethylarsinic acid in blood and urine [98].

Table 4: Arsenic in seafood (µg/kg).

Country Sample Source Arsenic  
(µg/kg)

References

Santa Catarina, Brazil Oreochromis niloticus Anthropogenic 27500.00–49200.00 Steckert et al.[108]

Paracatu, Brazil Squalus acanthias Anthropogenic 233.00 Ng et al.[55]

Bangladesh Labeo rohita Geogenic 110.00 Islam et al.[94]

Pangasius pangasius 230.00

Oreochromis niloticus 940.00

Channa panctatus 230.00

Augusta, Southern Italy Pagellus erythrinus Anthropogenic 3620.00 Di Bella et al. [109]

Pagellus acarne 4720.00

Mullus barbatus 9940.00

Sepia offcinalis 2268.00

Shandong Province, China Ctenopharyngodon idella Anthropogenic 41.00 Yang et al. [110]

Carassius carassius 89.00

Hypophthalmichthys nobilis 118.00

Scomberomorus niphonius 995.00

Trichiurus lepturus 1130.00

Larimichthys polyactis 1400.00

Lateolabrax japonicus 852.00

Sardina pilchardus 2260.00
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Physicochemical parameters, namely, pH, salinity, the presence of 
other elements, and dissolved organic matter along with food ingestion 
rate, gut passage time, gut environment, living prey/food composition, 
species, and density, also affect the assimilation of arsenic from 
food [101]. Physiological functions such as excretion, molting, and 

reproduction also affect aquatic organisms’ bioaccumulation rate 
by physically removing arsenic from their body [101,102]. The 
seafood cooking method also affects arsenic bioavailability; even the 
same cooking method can affect arsenic bioavailability in different 
seafood’s [103]. In conformity with this, Perelló et al. [104] reported 
that deep frying and baking increased the inorganic arsenic levels in 
bivalve shells and squids. However, more in-depth studies are needed 
to focus on various in vivo models to monitor the transformation of 
arsenic species during assimilation of seafood inside the gastrointestinal 
tract till its accumulation at the cellular level and excretion from the 
human body.

6. ARSENIC IN FOOD CHAIN AND HUMAN HEALTH RISK

Millions of people are chronically exposed to arsenic via food, air, 
water, and soil, leading to adverse long-term health consequences [32] 
[Figure 1]. In humans, arsenic exposure and toxicity arise due to 
environmental, occupational, or dietary exposure. It is a challenging 
task yet critical to monitor the food chain as human beings are the top 
consumers of the food chain. Thus contaminated food chain brings 
more degree of carcinogenic health risks on prolonged arsenic exposure 
through various dietary routes [Figure 2]. According to epidemiological 
studies, chronic arsenic exposure is associated with an increased risk 
of liver, kidney, prostate, skin, bladder, and lung cancers due to its 
ability to cause oxidative stress, DNA damage, cellular mutations, and 
enzyme inhibition [111]. Neuropathies of the central nervous system 
are attributed to its penetrability to the blood-brain barrier by altering 
the mitochondrial membrane instability, neurotransmitter impairment, 
and enzyme disruption [112]. Due to its capacity to cross placental Figure 1: Health disorders and diseases caused by arsenic toxicity.

Figure 2: Transfer of Arsenic in the food chain [(Arsenic in drinking water of livestock, milk produced by livestock, estimated daily intake of Arsenic and Cancer 
risks in children of three age groups); (Source: created from data reported by Kazi et al. [11])].
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barriers, it can reach fetuses from mothers, potentially causing adverse 
pregnancy outcomes [113]. It poses deleterious effects on reproductive 
health by increasing infant mortality and preterm birth and negatively 
influencing neonatal development [114]. Other reported outcomes 
of arsenic toxicity include skin disorders [53], hyperpigmentation, 
keratosis, bronchitis, chronic obstructive pulmonary disease, 
bronchiectasis, as noncirrhotic portal fibrosis, and others such as 
polyneuropathy, hypertension, peripheral vascular disorders, ischemic 
heart disease, diabetes, and edema of hands and feet [13,111,112]. In 
addition to these dermatological, lung, and heart illnesses, chronic 
arsenic toxicity also causes variable clinical consequences, the 
treatments of which are sometimes only indicative and are worse [13].

Several studies have been conducted to evaluate arsenic toxicity and 
human health risk in various arsenic-contaminated regions [10,52]. 
Arsenic risk assessment studies have received massive attention in the 
recent past due to the fatal effects of its toxicity; these studies evaluate 
whether occupants of a specific area are exposed to arsenic from 
different media of the biosphere (soil/air/water/food). If so, whether 
those exposure levels pose an unacceptable health risk to the population 
or not. Risk assessment entails contaminant exposure, toxicity, and 
risk characterization. Many countries have used various models and 
indices to calculate the magnitude and likelihood of human health 
risk, namely, Iran [113], China [6,48], India [46,32], Pakistan [114], 
and Bangladesh [54] Consumption of highland barley irrigated with 
geothermally arsenic contaminated water in Tibet posed a cancer risk 
of 5.4 in 10,000 [6]. Kazi et al. [11] assessed the cancer risk in children 
from milk consumption of the local livestock. High arsenic in the milk 
samples of cows, sheep, goats, and camels was observed (range of 
15.1–18.4, 25.7–33.2, 10.5–37.3, and 6.6–13.7 µg/L, respectively) 
due to drinking water. Arsenic in livestock drinking water of each 
farm/flock was found in the range of 238–2000 µg/L. The total hazard 
quotient for children consuming the milk of sheep, goats, cows, and 
camels was found >1 of the reference dose for arsenic, posing the 
adverse effects on the health of the local children [Figure 2].

Thus, it is evident that arsenic transfer from different environmental 
matrices may enter the food chain through dietary route, leading to 
severe risks to food security, and human health. Henceforth, focus 
on controlling the possible elevation of arsenic contamination in 
the food chain and its possible abatement is much needed. Novel 
methods such as transgenic approach and bioremediation along with 
conventional practices may help in mitigating the arsenic from various 
environmental metrics and food chain, further lowering the risks to 
human health [115].

7. CONCLUSION

Arsenic, being the first-class member of carcinogen, imparts high 
risks to the human population due to its characteristics such as 
toxicity, high persistence, and bioaccumulation capacity in different 
matrices of the environment. Arsenic contamination of soil, water 
resources, and food crops due to anthropogenic and geological sources 
is of profound environmental health concern. In this study, we found 
extensive evidence of elevated arsenic in the food chain, mainly in 
rice and vegetables. The uptake of arsenic by rice crops showed a 
significant exposure pathway to the population thriving in the arsenic 
endemic regions and where a rice-based diet is dominant. Arsenic 
in livestock-based food products such as milk, seafood, poultry, and 
meat products is a significant contributor to food chain contamination, 
especially in arsenic endemic regions. Chronic exposure can cause 
skin diseases, developmental, reproductive, respiratory, nephrological 

and endocrinological diseases, and various cancer types in human 
beings. Hence, in current scenario where arsenic has become a global 
menace, there is a dire need of an integrated approach to combat the 
arsenic contamination thus necessitating formulation of national and 
global action plan for arsenic contamination mitigation.
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