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ABSTRACT

The use of silver nanoparticles (AgNPs) and other combinations of AgNPs with various biomaterials is being 
exploited by the scientific community to regulate bacterial growth. In the present study, one-pot synthesis of AgNPs 
functionalized natural products doped polyaniline hybrid materials (SNPs) has been successfully synthesized 
The signature of the functional groups, morphology, and elemental composition of the new SNPs were studied 
by Fourier transform infrared, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray 
diffraction techniques. The synthesized SNPs were investigated for their antibacterial potency against Escherichia 
coli, Klebsiella pneumoniae, Streptococcus mutans, and Enterococcus faecalis and antifungal properties against 
Aspergillus niger, Fusarium oxysporum, Epidermophyton floccosum, and Trichophyton rubrum. Our results have 
demonstrated the antibacterial activities of new SNPs of gallic acid and myoinositol on S. mutans and E. faecalis with 
minimal inhibitory concentration and minimal bactericidal concentration values of 1.5 and 2 mg/mL, respectively. 
The SNP of phloroglucinol was effective against E. floccosum and T. rubrum at 5 mg/mL concentrations. This study 
indicates that SNPs exhibited significant antibacterial and antifungal activity against selected strains of bacteria and 
fungi when compared to AgNPs functionalized polyaniline hybrid materials (SPs) alone.

1. INTRODUCTION

Nanotechnology has evolved as a fascinating domain of research due 
to its potential applications in diverse areas of science and technology, 
such as material science, optical sensors, surface modification, 
catalysis, water purification, diagnostics, drug delivery systems, 
and nanoformulations of useful drugs [1]. Nanoparticles are often 
synthesized through different chemical, physical, and biochemical 
processes from organic and inorganic materials. Nanoparticles have a 
high surface-to-volume ratio, which gives them a significant advantage 
in a variety of applications [2-4].

Synthesis of functionalized nanomaterials and investigation of their 
applications for practical utility has been a leading domain of research 
during the past decade [5-8]. Natural products have been the source 
of drugs, and many of them have been successfully incorporated 
into nanomaterials to form functional nanocomposites [9,10]. Drug 
resistance of pathogenic bacteria is a global challenge in therapeutics 
due to the incredible adaptability of these microorganisms. This makes 
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the research on antimicrobial drugs an evergreen domain and there is 
an ever-growing demand for new therapeutic agents with antimicrobial 
potential [11,12]. The fortification of silver nanoparticles (AgNPs) 
with antimicrobial phytochemical extracts has been proven as an agile 
process for the green synthesis of potential antimicrobial pro-drugs to 
combat drug-resistant microbial strains [4,13]. Quite a large number 
of independent studies have reported the green synthesis of AgNPs 
by employing several plant extracts [14-18] for different applications. 
It has been well documented that AgNPs exhibit antimicrobial and 
fungistatic efficacy [19,20]. Interestingly, few researchers have also 
reported the antimicrobial efficacy of AgNPs fortified with components 
of lower terrestrial plants like ferns [4,21]. Apart from this, many of the 
nanocomposites of silver in combination with natural products have 
been found to possess potential therapeutic applications. Anticancer, 
antidiabetic, anti-inflammatory, and antimicrobial activities are some 
of the few identified applications [4,13,22-24].

Due to its ease of synthesis, low cost, excellent electrical conductivity, 
optical property, and admirable stability, polyaniline (PANI) has 
gained significant attention in numerous emerging technologies, 
including energy conservation and storage, molecular electronics, and 
sensors [25-29]. PANI has been received by researchers as a preferred 
choice of material to incorporate a wide variety of functional groups 
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and subunits, to investigate antimicrobial activities, cytotoxicity, 
biocompatibility, antioxidant activity, drug delivery, tissue engineering, 
wound healing, and biosensor applications [30]. The present study 
aims to synthesize silver nanoparticles functionalized natural products 
doped PANI (SNPs) (as depicted in Scheme 1) and to evaluate the 
efficiency of the natural products as dopants in combination with PANI 
and AgNPs against selected microbial pathogens.

2. MATERIALS AND METHODS

2.1. Preparation of AgNPs Functionalized Natural Products 
Doped PANI (SNPs)
The chemicals used in the present study have been purchased 
from standard commercial sources. Aniline, silver nitrate, 
paraphenylenediamine, oxalic acid, adipic acid, and myoinositol were 
sourced from S.D. Fine Chemicals, ellagic acid and phloroglucinol 
from Sigma-Aldrich, and gallic acid from Spectrochem. SNPs 
were synthesized by dissolving 1 g of aniline as monomer and 0.1 
equivalent of paraphenylenediamine as an initiator in 100  mL of 
distilled water containing 0.3 equivalent of natural products. To 
the above reaction mixture, three equivalents of AgNO3 dissolved 
in 50 mL of distilled water were added drop by drop with constant 
stirring. After complete addition, the reaction mixture was stirred 
for additional 24 h at room temperature. The product obtained was 
filtered, washed with water followed by methanol, and vacuum dried 
at 60°C for 12 h.

2.2. Characterization of SNPs
The analysis of SNPs was performed by Fourier transform infrared 
(FTIR), X-ray diffraction (XRD), scanning electron microscopy 
(SEM), and energy-dispersive X-ray spectroscopy (EDX).

2.2.1. FTIR spectroscopy
The active functional groups existing in SNPs synthesized were 
scrutinized by employing an FT/IR-6000 modeled FTIR spectrometer. 
To obtain the data, the resolution was maintained at 4   cm−1 and 
the wavenumber range was set between 4000 and 400   cm−1. To 
perform this analysis, the samples were combined with KBr to get 
pellets from which transmittance was observed. This analysis would 
provide information relating to functional groups present in as 
synthesized  SNPs.

2.2.2. XRD
XRD was performed by ARL™ Equinox 100 modeled XRD utilizing 
monochromatic X-rays of Cu Kα radiation operating at 30 mA and 

40 kV with 2θ ranging from10° to 70°. The average crystallite size of 
prepared nanoparticles was analyzed by Scherrer’s formula utilizing 
full width at half maximum (FWHM) of the highest peak.

2.2.3. SEM and EDX
The surface morphology of prepared SNPs was determined by SEM, 
using Thermo Scientific Quattro ESEM with an accelerating voltage of 
1 kV or 5 kV. Each sample was placed on a stub adhered with carbon 
tape and sputtered with gold to capture images. SEM was equipped 
with EDX, which was employed to examine the qualitative chemical 
composition of SNPs synthesized in this study.

2.3. Evaluation of the Antibacterial Activity of SNPs
2.3.1. Bacterial strains
Four different strains of bacteria were used in the study which are 
Escherichia coli MG 1586, Klebsiella pneumoniae MTCC 4030 (both 
clinically important strains), Enterococcus faecalis ATCC 29212, and 
Streptococcus mutans MTCC-890 (two common oral pathogens). These 
bacterial strains were originally procured from MTCC, Chandigarh, 
and maintained at the laboratory of Dextrose Technologies Pvt. Ltd., 
Bengaluru. E. coli and K. pneumoniae were cultured on Luria-Bertani 
agar/broth at 37°C. E. faecalis and S. mutans were cultured in brain 
heart infusion broth at 37°C. All the media used for culturing bacteria 
were procured from HiMedia Laboratories.

2.3.2. Well diffusion assay
The well diffusion method was used to assess the antibacterial activity 
of SNPs. About 150 μl pre-cultured test organisms were dispersed onto 
agar plates and 6  mm diameter wells in specified agar media were 
punched. SNPs with various concentrations (1, 2.5, 5, and 10 mg/mL) 
were placed on each agar plate inoculated with bacterial strains. The 
zone of inhibition was measured after 24  h of incubation at 37°C. 
Effective concentrations of the samples showing good activity were 
determined in terms of minimal inhibitory concentration (MIC) and 
minimal bactericidal concentration (MBC) by the broth dilution 
method.

The newly synthesized SNPs have been tested for their 
bacteriostatic activity by well diffusion assay on four species 
of bacteria, namely, E. coli, K. pneumoniae, S. mutans, and E. 
faecalis at concentrations of 1, 2.5, 5, and 10 mg/mL in triplicates. 
Amoxicillin at a concentration of 30 µg/mL was used as positive 
control and DMSO as a negative control. The concentrations of 
SNPs for the experimental trials have been chosen according 
to Iftikhar et   al.   [16]. By determining MIC and MBC, the 

Scheme 1. Synthesis of silver nanoparticles functionalized natural products doped PANI.
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reproducibility of the results of the zone of inhibition has been 
confirmed using the broth dilution method.

2.3.3. Analysis of bacterial cells treated with SNPs
The effect of SNPs on bacteria was evaluated by incubating bacterial 
cells in overnight cultures with different concentrations of the SNPs 
and imaging the treated cells. The procedure was carried out inside 
a biosafety cabinet until mounting of the sample. The bacterial cells 
were fixed using 1% paraformaldehyde and 2% glutaraldehyde (1:1) 
for an hour. The bacterial suspension of 100 µL was released into 5 mL 
of medium and filtered using a filter with a pore size of 0.08 μm. If the 
filter gets clogged, the suspension was diluted further and the filter was 
washed with diluted ethanol. Later, the filter was removed and allowed 
to dry at room temperature and then cut into pieces to mount on the 
carbon tape, which was fixed on the stub. The stub was removed from 
the biosafety cabinet and placed for sputtering to capture the SEM 
images.

2.4. Evaluation of the Antifungal Activity of SNPs
2.4.1. Fungal strains
The fungal species used in the present study include common species 
Aspergillus niger locally isolated from the soil and identified based 
on macroscopical and microscopical characters [31,32] and Fusarium 

Figure 1: FTIR spectra of SNPs (a) control – SPs, (b) adipic acid [ADP], 
(c)  oxalic acid [OA], (d) myoinositol [MI], (e) phloroglucinol [PG], (f) gallic 

acid [GA], and (g) ellagic acid [EA].

Figure 2: XRD images of synthesized SNPs.
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oxysporum MTCC 3327 sourced from MTCC. Dermal pathogenic 
fungi, Epidermophyton floccosum MTCC 7880, and Trichophyton 
rubrum MTCC 3272 also were procured from MTCC, Chandigarh, 
and maintained at Dextrose Technologies laboratory.

2.4.2. Well diffusion assay
Evaluation of the antifungal activity of the SNPs was performed by 
well diffusion assay. About 150 μL of pre-cultured test organisms 
were spread onto the agar plates and wells of 6 mm in diameter were 
punched in specific agar media. Based on previously documented 
literature, various concentrations of SNPs such as 1, 2.5, 5, and 10 mg/
mL were loaded into the wells [16]. Fungal plates were incubated at 
room temperature for 48–96 h, after which zones of inhibition were 
measured and tabulated.

3. RESULTS AND DISCUSSION

3.1. Characterization of SNPs
3.1.1. FTIR spectra
The FTIR spectra of AgNPs functionalized polyaniline nanocomposites 
(SPs) and SNPs are presented in Figure 1. The spectra of SPs indicate 
the presence of C-H vibration peaks at 2977 and 2896 cm−1. The C-H 
bending in SPs can be observed at 1398 and 1060 cm−1. SPs exhibited 
a C=N bond vibration peak at 1662 cm−1, C-N bond vibration at 
1230 cm−1, and C=C bond vibration peaks at 1540 cm−1 [33]. Similar 
peaks are observed in all SNPs. In addition, ellagic acid doped SNP 
exhibited phenolic OH group at 3660 cm−1 and C=O stretching 
at 1719 cm−1 [34]. Adipic acid, gallic acid, and oxalic acid doped 
SNPs exhibited a broad peak at around 3400 cm−1 corresponding to 
carboxylic acid. Phloroglucinol and myoinositol doped SNPs showed 
the presence of −OH groups at 3447 cm−1 and 3362 cm−1, respectively.

3.1.2. XRD analysis
The diffraction pattern was observed in the XRD spectrum of the SNPs, 
indicating their crystalline nature. The fingerprint diffraction patterns 
of SNPs are illustrated in Figure 2, which shows three major peaks 
at 2θ = 37.51°, 43.12°, and 63.47° corresponding to the planes (111), 
(200), and (220), thereby indicating the face-centered cubic patterns of 
SNPs [35]. Using Scherrer’s formula, the average crystallite size of the 
SNPs obtained from FWHM of the more intense peak corresponding 
to the (111) plane located at 37.51º was determined to be ~40 nm.

3.1.3. SEM and EDX analysis
The SEM images of SNPs are illustrated in Figure  3 and their 
respective EDX in Figure  4. The SEM images were captured with 
X 20,000. The surface morphology of SNPs certainly reveals the 
uniform and good dispersion of nanoparticles. The agglomeration 
of nanoparticles might have occurred because of the electrostatic 
interaction of SNPs. The images captured here resemble that of [36], 
where the morphology was spherical in appearance with aggregation 
as found in our analysis.

The qualitative and quantitative profile of elements present in the 
synthesized SNPs was confirmed by analysis of EDX. The spectral 
analysis has indicated intense signals relating to the Ag element, 
which further affirms the incorporation of the natural products into the 
AgNPs during the synthesis of the SNPs. The EDX profile of Ag at 3 
keV is indicated by a strong peak, confirming it as the major elemental 
component of the SNPs. In addition to Ag, elements such as C and O 
were observed in SNPs, which can be attributed to carbon and oxygen 
present in the PANI and dopants.

To study the effect of SNPs on bacterial cells, overnight grown 
bacterial cells were treated with different concentrations of the 

Figure 3: SEM images of SNPs synthesized using (a) control – SPs, (b) adipic acid, (c) ellagic acid, (d) gallic acid, (e) oxalic acid, (f) myoinositol, and 
(g)  phloroglucinol.
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SNPs and a change in surface morphology was observed using SEM 
analysis. Figure 5 illustrates the images of E. coli cells treated with 
SNPs doped with adipic acid and gallic acid. Loss of integrity of 
the cells is indicated by the uneven shapes of cells, indicating the 
development of cracks or ruptures on the cell wall in SNPs treated 
cells when compared to control. The disruption of cells was observed 
among SNPs treated cells of E. faecalis and S. mutans. The same is 
depicted in Figure 5.

3.2. Evaluation of the Antimicrobial Activity of SNPs
Bacterial infections are a significant cause of morbidity and mortality 
in humans [37]. In traditional medicine, crude drugs formulated from 
extracts of plants in combination with other natural products are used 
for treating bacterial infections, which impart dual benefits, inhibiting 
bacterial proliferation along with enhancing general immunity of 
the body [38]. Therefore, traditional medicines provide long-term 
protection against a broad spectrum of infections [39]. Contrary to 
this approach, modern medicine relies on isolated active compounds, 
synthesized or produced on a large scale, to address the issue of meeting 

the higher demand. This trend has led to the phenomenon of antibiotic 
resistance among pathogenic [40]. Recently, nanoparticles conjugated 
with active drug molecules have emerged as novel tools for developing 
antibacterial formulations [41]. A combination of natural products with 
green synthesized nanoparticles would be an ideal choice for drug 
development. This idea has prompted us to synthesize SNPs, which have 
both AgNPs and the natural antimicrobial qualities of organic dopants.

The microbial growth inhibition induced by SNPs has been 
demonstrated in selected bacterial and fungal strains. Easy methods 
of synthesis and enhanced efficacy demonstrated by the nanoparticles 
in damaging microorganisms have made them acceptable for 
antimicrobial applications. The reason for such an enhanced effect 
is the release of cations from nanoparticles while entering the cell, 
which causes a transformation in their normal functioning and hence 
kills the bacterium. Gram-negative bacteria, which possess a thin 
peptidoglycan layer in their cell walls when compared to Gram-
positive bacteria, allow better penetration of nanoparticles and hence 
exhibit a larger zone of inhibition [42] in well/disk diffusion assays 
and the same observation was found in our present study as well.

Figure 4: EDX images of synthesized SNPs.
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3.2.1. Bacteriostatic activity of SNPs on E. coli and K. pneumoniae
The concentration-dependent bacteriostatic efficiency of SNPs on 
different strains of bacteria is depicted in Table 1. The zone of inhibition 
and MBC of the top three SNPs on E. coli is provided in supplementary 
information [Figures S1-S3]. It can be understood from the data that 
all SNPs except phloroglucinol showed bacteriostatic activity against 
E. coli. It is evident from the data that myoinositol doped SNP-treated 
K. pneumoniae showed growth inhibition, implying superior activity 
in comparison to other SNPs. Multivariate ANOVA of the MBC values 
of ellagic acid-doped SNP against E. coli has yielded 15.0137 as F 
statistic and 0.001959 as P-value for intercept and 9.7051 as F value 
and 0.007256 as P-value for MIC, indicating the null hypothesis to be 
true. In the case of oxalic acid-doped SNP, the P-value for the intercept 
is 0.05064, indicating that it is false and so it must be rejected whereas, 
the MIC did not affect the P-value (0.30005). Adipic acid-doped SNP 
showed a true null hypothesis [Table 2]. Multivariate ANOVA of the 
MIC and MBC results of the treatment of myoinositol-doped SNP on 
K. pneumoniae indicated 36.238 as F-statistic and 9.766 10−5 as P-value 
for intercept, while 11.557 as F-statistic and 0.00437 as P-value for 
MIC, which affirms the true null hypothesis [Table 2]. Ellagic acid-
doped SNP results displayed a true null hypothesis in both intercept and 
MIC, which signifies that they were effective in controlling the growth 
of K. pneumoniae. Furthermore, to be specific, the two SNPs, that is, 
ellagic acid and myoinositol-doped SNP, revealed the same activity. 
The SNPs doped with gallic acid, adipic acid, and phloroglucinol did 
not show any inhibition of growth in the case of K. pneumoniae. The 
reason behind such interactions could be ascribed to the phytochemical 

properties possessed by individual SNPs that account for their ability 
to hinder the growth of bacteria.

3.3. Evaluation of the Antimicrobial Efficacy of SNPs on 
Dental/Oral Pathogens
3.3.1. Bacteriostatic activity of SNPs on S. mutans
Subsequently, we have evaluated the antibacterial effect on Gram-
positive dental pathogens like S. mutans. The bacteriostatic effect 
along with standard deviation on S. mutans due to the treatment with 
SNPs, SPs, and control is presented in Table 1, and it can be observed 
that all the SNPs have demonstrated good antibacterial activity. 
The MIC and MBC values of SNPs in S. mutans are illustrated in 
Table 2. All the samples tested on S. mutans have emerged as equally 
potent bacteriostatic candidates. Multivariate ANOVA of the data 
of myoinositol-doped SNP yielded a high F-static of 114.778 and a 
P-value of 1.653. This shows that the hypothesis was true and the null 
hypothesis was rejected. Gallic acid-doped SNP showed no effect on 
hypothesis testing, and phloroglucinol-doped SNP showed significant 
true hypothesis testing. The zone of inhibition and MBC test results for 
myoinositol doped SNP on S. mutans are presented in Figure 6.

3.3.2. Bacteriostatic activity of SNPs on E. faecalis
E. faecalis is another dental pathogen on which the efficacy of 
SNPs has been tested. The bacteriostatic efficacy of the SNPs on 
this pathogen is presented in Table 1. We performed the multivariate 
ANOVA for the results of MIC and MBC tests on this pathogen for 
different SNPs using Roy’s method and the results are presented in 

Figure 5: SEM images of I) E. coli treated with SNPs (a) control – SPs, (b) adipic acid and (c) gallic acid; II) E. faecalis treated with SNPs (a) gallic acid and 
(b)  myoinositol; III) S. mutans treated with SNP a) oxalic acid; and IV) E. faecalis treated with SNPs (a) gallic acid and (b) myoinositol.
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Table 2. Myoinositol-doped SNP has yielded 13.182 under F-static and 
0.006372 as P value defined for intercept, while MIC showed 11.636 
for F-static and 0.008612 for P-value. This indicates that the null 
hypothesis was tested and found to be true. The parallel evaluation was 
also obtained for adipic acid and gallic acid doped SNPs. The images 
of MIC and MBC treatment of gallic acid-doped SNP are presented in 
Figure 7.

The above results indicate that SNPs showed better antimicrobial 
activity than SPs and can also perform on par with the commercially 
available antibiotics. Nanoparticles are known to possess the tendency 
to react with sulfur and phosphorus predominantly present in the outer 

membrane of bacteria, leading to the formation of pores in the bacterial 
cell wall. The interaction of nanoparticles to the bacterial membrane 
leads to the outflow of intracellular substances which causes shrinkage 
and finally lysis of the cell [43]. Different mechanisms are being 
proposed for the mode of action of nanoparticles on bacterial cells, 
such as cell wall and membrane damage, intracellular penetration and 
damage, and oxidative stress [44]. Our attempt to control the antibiotic-
resistant bacterial phenotype was found to be successful as discussed 
in Section 3.1.3. SNPs have been shown to break the bacterial cell wall 
[Figure 5], indicating that they could be used as pro-drug antibiotic 
candidates.

Table 1: Bacteriostatic efficacy of SPs and SNPs on E. coli, K. pneumoniae, S. mutans, and E. faecalis.

Bacterial strains SNPs Zone of inhibition (in mm)* SD

1 mg/mL 2.5 mg/mL 5 mg/mL 10 mg/mL

E. coli Gallic acid 0 0 5.6 9 4.4

Adipic acid 0 5.3 6 9.3 3.9

Ellagic acid 5.6 6.3 11.7 12.3 3.5

Oxalic acid 0 5.6 7.6 7.6 3.6

Myoinositol 0 0 7.3 8 4.4

SPs 0 10 10 13 3.2

K. pneumoniae Ellagic acid 0 0 0 9.6 4.8

Oxalic acid 0 0 0 8 4

Myoinositol 0 0 4.6 13.6 6.4

SPs 0 0 0 0 0.0

S. mutans Gallic acid 0 9 9.6 11.3 5.08

Ellagic acid 0 0 8.6 13.6 6.73

Oxalic acid 0 0 5.6 14 6.62

Phloroglucinol 0 4.3 8 8.6 3.97

Myoinositol 0 9.6 11.6 16 6.75

SPs 0 6 11 10 4.6

E. faecalis Gallic acid 0 0 10.6 9.6 5.85

Adipic acid 0 0 8.3 12.3 6.17

Ellagic acid 0 0 0 7.6 3.80

Oxalic acid 0 0 0 12.3 6.150

Myoinositol 4.3 5.3 7.6 11.3 3.11

SPs 0 0 0 6 3.0

−ve control (DMSO) 0 0 0 0 0.0

+ve control amoxicillin 30 µg/ml 18 NT NT NT 0.0

*Average of three replicates. NT: Not tested, E. coli: Escherichia coli, K. pneumoniae: Klebsiella pneumoniae, S. mutans: Streptococcus mutans, E. faecalis: Enterococcus faecalis

Table 2: MIC and MBC of SNPs on bacteria.

S. No. SNPs E. coli K. pneumoniae S. mutans E. faecalis

MIC MBC MIC MBC MIC MBC MIC MBC

1. Gallic acid >5 >5 NA NA 1.5 2 1.5 2

2. Adipic acid 2.5 3 NA NA NA NA NA NA

3. Ellagic acid 1 1.5 >5 >5 >5 >5 >5 >5

4. Oxalic acid 2.5 3 NA NA >5 >5 >5 >5

5. Phloroglucinol >5 >5 NA NA 5 >5 5 >5

6. Myoinositol >5 >5 >5 >5 1.5 2 1.5 2

7. SPs 1.5 2 NA NA 5 >5 >5 >5
All values are in mg/mL. NA: No activity, E. coli: Escherichia coli, K. pneumoniae: Klebsiella pneumoniae, S. mutans: Streptococcus mutans, E. faecalis: Enterococcus faecalis, 
MIC:  Minimal inhibitory concentration, MBC: Minimal bactericidal concentration
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3.4. Antifungal Activity of SNPs
Fungi are found all over the world, and their pathogenic varieties are 
highly resistant which makes them tough to combat. Therefore, it is 
important to study the fungistatic activity of the SNPs, as well. A. niger 
is known to cause critical diseases such as aspergillosis and otomycosis, 
F. oxysporum can cause mycotoxicosis and skin-related infections, 
while E. floccosum is recognized for triggering septicity such as tinea 
pedis, tinea cruris, tinea corporis, and onychomycosis, and T. rubrum is 
noted for athlete’s foot, infections such as jock itch and ringworm. We 
have evaluated the effect of our SNPs against predominant pathogenic 
fungi A. niger, F. oxysporum, E.   floccosum, and T. rubrum. The 
fungal virulence factor, encrypting gene rearrangements, and other 
similar observed behaviors are attributed to the adaptation to any stress 
environment [45]. It was observed from Table 3 that oxalic acid- and 
phloroglucinol-doped SNP exhibited better antifungal effects compared 
to the other SNPs. The gallic acid-, adipic acid-, and myoinositol-doped 

SNPs have hardly exhibited any mycostatic activity. These data are 
supported by Figures S4-S7 signifying the zone of inhibition exhibited 
by SNPs and control against individual fungal strains. Oxalic acid-doped 
SNP was effective against A. niger and F. oxysporum with 7.33 mm of 
inhibition at 5 mg/mL and 20 mm at 10 mg/mL, respectively. Ellagic 
acid-doped SNP inhibited the growth of E. floccosum by 12 mm at a 
10  mg/mL concentration. When the fungal strains were dosed with 
5 mg/mL of phloroglucinol-doped SNP, the growth inhibition of 11 mm 
and 9.67 mm was observed in E.  floccosum and T. rubrum organisms, 
justifying their fungistatic activity.

Organic acids can be efficiently used as antifungal agents due to their 
properties relating to bioactivity, polarity, and high solubility in many 
solvents including water [46]. There is evidence for the fact that 
commercial antifungals have limited utilization and also related medicinal 
values because of side effects and slow recovery [47], and hence, there is 

Table 3: The fungistatic activity of SNPs in terms of zone of inhibition.

S. No. SNPs Target fungal species

A. niger F. oxysporum E. floccosum T. rubrum

1. Gallic acid ‑ ‑ ‑ ‑

2. Adipic acid ‑ ‑ ‑ ‑

3. Ellagic acid ‑ ‑ 10 mg/mL (12 mm) ‑

4. Oxalic acid 5 mg/mL (7.33 mm) 10 mg/mL (20 mm) ‑

5. Phloroglucinol ‑ ‑ 5 mg/mL (11 mm) 5 mg/mL (9.67 mm)

6. Myoinositol ‑ ‑ ‑ ‑

7. SPs ‑ ‑ ‑ ‑
A. niger: Aspergillus niger, F. oxysporum: Fusarium oxysporum, E. floccosum: Epidermophyton floccosum, T. rubrum: Trichophyton rubrum

Figure 6: Zone of inhibition and MBC of myoinositol SNP by Streptococcus mutans.

Figure 7: Zone of inhibition and MBC of gallic acid by Enterococcus faecalis.
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an urgent need to design and develop nanoparticles with better antifungal 
activities. Therefore, we opted to incorporate selected natural products 
with AgNPs and PANI to enhance their antifungal activity, which 
has been proved in our study through the significant difference in the 
antifungal activities of SNPs with those of the control samples [Table 3]. 
Similar observation on enhanced antifungal activity of nanomaterial 
reported earlier by Xia et al. [48]. Our study has demonstrated interesting 
results by inhibiting human and animal pathogenic fungi, indicating their 
potential as alternatives to commercial antifungal products.

4. CONCLUSION

Our investigation is directed toward the synthesis of the natural 
products as dopants in combination with redox-active PANI and 
AgNPs and to evaluate antimicrobial and antifungal activities against 
selected microbial pathogens. Based on the outcomes of the bioassays, 
myoinositol-  and gallic acid-doped SNPs have been found effective 
against dental pathogens compared to SPs. Ellagic acid-doped SNP 
was effective against E. coli. In addition, the antifungal activities of 
the SNPs have also been assessed by  in vitro bioassays against four 
fungal species, including dermal pathogens. It was evident from our 
study that, when compared to SPs, the SNPs exhibited better antifungal 
activity. Oxalic acid-doped SNP showed good inhibition against the 
growth of common fungi A. niger and F. oxysporum. The effective 
arrest of dermal pathogens E. floccosum and T. rubrum was observed 
on SNP-doped phloroglucinol. Our investigation into the antimicrobial 
properties of AgNPs in combination with natural products and redox-
active polyaniline hybrid materials has yielded encouraging results 
when compared with AgNPs-polyaniline nanocomposite without 
dopants, indicating their scope in therapeutic domains. These findings 
can provide a profound impact on combating the antibiotic-resistant 
strains of pathogenic bacteria. More focused and in-depth investigations 
in these areas are warranted to reap the full benefits of this finding.
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SUPPLEMENTARY INFORMATION

Silver nanoparticles decorated natural products doped polyaniline hybrid materials for biomedical applications

Figure S1: Zone of inhibition and MBC of gallic acid SNP by Escherichia coli.

Figure S3: Zone of inhibition and MBC of ellagic acid SNP by Escherichia coli.

Figure S2: Zone of inhibition and MBC of adipic acid SNP by Escherichia coli.
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Figure S4: Zone of inhibition of SNPs on Aspergillus niger (a) control – SPs, (b) oxalic acid, (c) myoinositol, (d) adipic acid, (e) gallic acid, (f) phloroglucinol, 
and (g) ellagic acid.
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Figure S5: Zone of inhibition of SNPs on Fusarium oxysporum (a) control – SPs, (b) oxalic acid, (c) gallic acid, (d) adipic acid, (e) ellagic acid, 
(f)  phloroglucinol, and (g) myoinositol.
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Figure S6: Zone of inhibition of SNPs on Epidermophyton floccosum (a) control – SPs, (b) phloroglucinol, (c) ellagic acid, (d) gallic acid, (e) oxalic acid, 
(f)  myoinositol, and (g) adipic acid.
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Figure S7: Zone of inhibition of SNPs on Trichophyton rubrum (a) control – SPs, (b) phloroglucinol, (c) ellagic acid, (d) gallic acid, (e) myoinositol, 
(f)  sadipic  acid, and (g) oxalic acid.

dc

g

b

f

a

e




