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ABSTRACT 

The productivity in agriculture is a major factor in the economy. As a result, disease detection in plants plays 
a significant role in agriculture. If sufficient care is not taken in this regard, then it can have major impacts 
on plants by affecting the quality, quantity, or productivity of the respective product or service. In addition 
to reducing the amount of labor required to monitor huge farms of crops, automatic disease detection detects 
symptoms at an early stage, i.e., when they first develop on plant leaves. A method for picture segmentation is 
presented in this study, which is utilized for the automatic categorization of banana leaf diseases. The images 
are used to detect and classify diseases in banana plants. This is a cost-effective and efficient way for farmers 
to monitor the plant’s health. The images must be segmented in order to evaluate and extract information from 
them. This module of image processing isolates the object of interest from the rest of the image, allowing for 
more detailed analysis. As a result, the success of a higher-level image processing modules is determined by 
the precision with image segmentation modules being carried out. For segmentation and classification, a hybrid 
fuzzy C-means procedure is used. Additionally, in order to identify banana plant illnesses, the color, shape, 
and texture characteristics were extracted. To compare the suggested method with the existing deep learning 
methods, for diseases such as black sigatoka, yellow sigatoka, dried/old leaves, banana bacterial wilt with 
healthy plants, several quantitative metrics were investigated.

1. INTRODUCTION
As a major source of food and livelihood for millions of people, 
agriculture is a vital industry. As a major food crop, bananas have 
the potential to generate substantial cash for growers and the 
country’s economy [1]. Farmers are not able to fully take use of 
the banana crop’s potential because of a variety of risks that reduce 
production. Pests and illnesses pose a major threat to banana 
production, reducing yields and resulting in substantial financial 
losses for growers. When plant diseases are correctly identified 
early on, growers can better control disease severity [2]. Insects 
and diseases have a wide range of symptomologies. In certain 

crops, diseases are visible at an early stage, while in others, they 
will only be apparent at a later stage, by that time it will be too late 
to save the crop from destruction.

Recently developed sensors for remote sensing have improved the 
ability to identify diseases in plants. Hyperspectral imaging at a close 
range is one of the new research techniques available to biologists 
[4]. In recent years, numerous researchers have described their work 
on the design and deployment of HS imaging schemes to gather 
reflectance information from plant leaves [5,6]. The sensor camera 
is moved over a piece of a leaf which records the reflection of light. 
It is highly problematic and expensive to obtain sufficiently labeled 
illustrations in the earlier illness infected stage for categorization due 
to the subsystem of the hyperspectral camera, as well as the non-
apparent signs of banana infection [7].

Artificial intelligence (AI) [8] helps to recognize plant illnesses based 
on the plant’s presence and visual symptoms that imitate human 
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behavior are deliberated [9]. This could help reduce the spread of pests 
and diseases by alerting farmers and speeding up disease detection 
[10]. Internet of things, robotics, and satellites are among the cutting-
edge technology transforming agriculture and helping farmers 
anticipate the future. Studies on wheat [11] and cassava [12] have 
verified AI-based detection of agricultural diseases. Computerized 
image-based illness recognition has shown talented results [14]. 
However, extracting characteristics is computationally demanding 
and requires expert knowledge for robust depiction [15,16], where 
only few substantial, curated crop disease image databases exist. 
Currently, the PlantVillage data set has over 50,000 photos of diverse 
crops and illnesses. Convolutional neural network (CNN) learned on 
these images, but did not perform well when using real field images 
[17]. Until now, crop disease-finding models have typically focused 
on leaf symptoms, which are the easiest to identify. 

Therefore, in this research study, hybrid segmentation is used to 
segment the affected areas of input leaves and a deep learning 
classifier is used for classification. The detailed explanation about 
research work is given in the following sections. The related study 
of the existing techniques on banana leaves are given in section 
2, whereas the study of the proposed technique is presented in 
section 3. The validation of the proposed technique with existing 
techniques in terms of various metrics is given in section 4. Lastly, 
the conclusion of the research study is provided in section 5. 

2. RELATED WORKS
With regard to CNN models, Ferentinos [18] detected plant 
diseases using simple photos of healthy and diseased leaves. The 
AlexNetOWTBn and VGG models were utilized in the CNN 
model to classify leaf diseases. An open database including 87,848 
photos of 25 diverse plants in 58 separate classes of plant–illness 
pairs was used to train the models. Both in-lab and field photos 
were acquired. We have 58 separate classes of combinations that 
include particular healthy plants (HP). We have 25 plant species 
in these groups. To produce the best results, the CNN model’s 
parameters are fine-tuned to optimize training parameters. As a 
result of the VGG CNN, classification accuracy reached 99.53%, 
with an error rate of only 0.47% correspondingly. The image 
segmentation, which affects classification accuracy, was excluded 
from this investigation.

A banana disease and pest detection scheme utilizing an AI-
based DCNN has been proposed by Selvaraj et al. [19] in order to 
benefit banana growers. Novel and rapid ways for detecting pests 
and diseases at the right moment will make it easier to monitor 
and create control measures with greater effectiveness. Just-in-
time crop disease detection is a new use of DCNNs and transfer 
learning. In this experiment, 18,000 photos of banana fields were 
used. The data set is separated into training (Ttr), validation (Tv), 
and testing (Tt), with 70%, 20%, and 10%, respectively. We also 
choose to use a simple random sampling technique due to its ease 
of implementation. The accuracy of the different models examined 
ranged from 70% to 99%. There are a number of ways in which 
this system can assist in the early detection and management of 
pests and diseases.

It was postulated that local textural traits might be used for the 
classification of three significant banana foliar diseases. As part of 
the pre-processing stage, the resized images are given a contrast 
boost using the contrast limited adaptive histogram equalization 
technique. Image enhancement and color segmentation are 
used to recognize the disease-affected regions. Three image 
transformations are used to convert segmented images to transform 
domain (DWT, DTCWT, and Ranklet transform). LBP and its 
derivatives are used to extract feature vectors from images in the 
transform domain (ELBP, MeanELBP, and MedianELBP). A 10-
fold cross-validation method is used to associate the performance 
of 5 prominent image classifiers. Tests with ELBP features taken 
from the DTCWT domain revealed the highest accuracy, precision, 
sensitivity, and specificity (96.4% and 95.4%, respectively).

For the classification of wheat seeds, Eldem [21] has presented 
a novel DNN model. In the overall data set, 70% of the data is 
trained data and 30% is test data. A 100% classification rate is 
achieved when the generated model is applied to data sets. More 
than 100,000 synthetic wheat seed data are generated using a fuzzy 
C-means (FCM) algorithm. There is a 70/30 split between the 
trained and the test data in this experiment. UCI wheat seed and 
synthetically created data sets were used to evaluate the proposed 
model. A 100% classification success rate was attained.

By imputing missing pixels, Balasubramaniam and Ananthi 
[22] have introduced a new technique for segmenting partial, 
nutrient-deficient cropped pictures [23]. In most cases, each 
image has pixels that convey information about its intensity. It is 
considered an incomplete image when there are missing pixels. 
It is not immediately relevant to incomplete images. This can 
lead to an error when attempting to segment nutritional deficient 
areas when there are missing pixww els. Due to intrinsic faults 
in imaging equipment or environmental conditions, crop pictures 
with nutritional deficit may contain missing pixels. Nutrient 
insufficiency in crop photos is segmented using FCM color 
clustering. 

3. PROPOSED SYSTEM
In this section, an explanation of the proposed scheme is given 
wherein Figure 1 shows the working procedure of banana leaf 
disease classification. Initially, the International Center for 
Tropical Agriculture (CIAT) banana images were taken as input 
data, which is given to the pre-processing technique. A hybrid 
segmentation called total generalized variation fuzzy C means 
(TGVFCMS) is used for segmenting the affected area on the 
leaves. After segmentation, the data is given to CNN for final 
classification. 

3.1. Data Set
We have a database of over 18,000 real field photographs of 
bananas in CIAT’s image library. The data sets cover dried/old 
leaves (DOL), HP, and a balanced 700 images from 5 major 
diseases such as Fusarium wilt of banana (FWB), black sigatoka 
(BS), Xanthomas wilt of banana or banana bacterial wilt (BBW), 
yellow sigatoka (YS), and banana bunchy top disease. The data 
set consists of entire plant, leaf, pseudo-stem, fruit bunch, cut fruit 
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and corm. But in this proposed research work, we have only used 
the leaf images to detect the disease BS, BBW, YS, and DOL in 
HP. Totally, we have only used 9,000 images from the data set. 
Some of the sample data set images are shown in Figure 2.

3.2. Pre-Processing
Images of the banana leaf will be commonly acquired in the RGB 
color space model. Color is an important feature as color value 
shows variations based on disease infection in the plant. Other 
color space models like RGB, hue saturation intensity (HSI), 

CMYK, L*a*b, and hue saturation value (HSV) can also be used 
for analysis. Acquired images are manipulated directly in the RGB 
color space model and color transformation is carried out over the 
image to standardize the color model. HSI and HSV color space 
models are commonly used in leaf disease identification as they 
are similar to human perception. In the HSI color model, hue and 
intensity of a color are observed and in the HSV color model, hue 
and value of a color are considered for manipulation. Hue is an 
important color component taken into consideration as it shows 
the perceived color of an object which is shown in Figure 3.

Figure 1: Working procedure of the proposed methodology.

Figure 2: Some of the sample data set images.

Figure 3: (a) Input image. (b) Hue component. (c) Saturation component. (d) Intensity component of the HSI color model.
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During image pre-processing, an image is altered to provide more 
information about the affected area of a leaf. With good visual 
interpretation, it presents leaf image information effectively. This 
procedure does not modify the leaf image’s inherent information, 
but it does change the dynamic range of specific aspects for 
localization, allowing for a more accurate localization. Image 
resizing and filtering are the common pre-processing techniques 
used in banana leaf disease diagnosis. The captured leaf image in 
different resolution sizes are standardized to a fixed resolution size 
using image resizing. Image filtering is used to remove unwanted 
region in leaf images as there are more possibilities to have dust 
particles or due drops on the leaf. The filtering process is carried 
out using either a low pass or high pass filter. A low pass filter 
lessens the amplitude of high frequencies and has low frequencies 
unchanged. A high pass filter retains high frequencies and soothes 
the amplitude of low frequencies. Median filter and average filter 
are commonly used filtering techniques to reduce noise in an 
image. The pre-processed images are given to the segmentation 
which is described in the section below.

3.3. Segmentation using TGVFCMS
After pre-processing, the segmentation is carried out. TGVFCMS 
technique is robust to noise and edge-preserving. Regularization 
of TGV images up to a specific order of separation is particularly 
beneficial for measuring image attributes like noise removal 
and edge sharpness. Our TGVFCMS was developed to include 
TGV regularization in the smoothing term in order to minimize 
undesirable noise and artifacts from FCM-based approaches. The 
following is the framework of TGV:

� (1)

where 0,1, , 1,l k= … −  and k∈ designates an order of TGV, 
and ( )0 1 1, , , ka a a a −= …  signifies the positive weight to TGV. 

( )kSym d  signifies the space of symmetric k-tensors. For 
each component,  the l-divergence of the symmetric 
k-tensor field is assumed as follows:

� (2)

Mk is the multi-index of order k given as follows:

� (3)

The ∞-norm for symmetric k-vector field is given as follows:

� (4)

This is because the first gradient and the high-order gradients 
generated in (4) are both restricted to be sparse. 

Here, the second-order TGV is as follows:

� (5)

where ( )2 , ×Ω d d
c S  signifies the vector space of compactly 

maintained under the set of symmetric matrices  d dS × . Calculation 
of divergence and norms can be carried out as follows:

� (6)
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The least solution is reserved over all vector fields on Ω and
( ) ( )      / 2Tv v uε = ∇ +∇  is the symmetrized derivative. 7 illustrates 

that the smooth regions are more likely to be created by 2 than by 1, 
when 2 is added to the smooth regions. If v = 0, then minimization 
could be achieved at the edge neighbors where 2 u is larger than 
u. Therefore, the ratio of positive weights 0α  and 1 α  can be 
used to achieve a balance among the first and second derivatives. 
These weights have been set to 0.10 and 0.15, respectively, for 
practical reasons. The suggested TGVFCMS can produce results 
that are more resilient to noise and detail-preserving through the 
definition of second-order TGV. After segmentation, classification 
techniques are used for prediction. The segmented sample image 
is shown in Figure 4.

3.4. Classification using Deep Learning Technique
The CNN is a matrix input-based classifier; so, we convert the 
segmented image into a gray scale image as a 32 × 32 matrix, 
which is given as an input image for CNN classification. The layer 
definition of the proposed CNN is defined below. 

Figure 4: Sample segmentation image.
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that the smooth regions are more likely to be created by 2 than by 1, 
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could be achieved at the edge neighbors where 2 u is larger than 
u. Therefore, the ratio of positive weights 0α  and 1 α  can be 
used to achieve a balance among the first and second derivatives. 
These weights have been set to 0.10 and 0.15, respectively, for 
practical reasons. The suggested TGVFCMS can produce results 
that are more resilient to noise and detail-preserving through the 
definition of second-order TGV. After segmentation, classification 
techniques are used for prediction. The segmented sample image 
is shown in Figure 4.

3.4. Classification using Deep Learning Technique
The CNN is a matrix input-based classifier; so, we convert the 
segmented image into a gray scale image as a 32 × 32 matrix, 
which is given as an input image for CNN classification. The layer 
definition of the proposed CNN is defined below. 

Figure 4: Sample segmentation image.

 can be used 
to achieve a balance among the first and second derivatives. 
These weights have been set to 0.10 and 0.15, respectively, for 
practical reasons. The suggested TGVFCMS can produce results 
that are more resilient to noise and detail-preserving through the 
definition of second-order TGV. After segmentation, classification 
techniques are used for prediction. The segmented sample image 
is shown in Figure 4.

3.4. Classification using Deep Learning Technique
The CNN is a matrix input-based classifier; so, we convert the 
segmented image into a gray scale image as a 32 × 32 matrix, 
which is given as an input image for CNN classification. The layer 
definition of the proposed CNN is defined below. 

Figure 4: Sample segmentation image.

Krishnan et al.: Journal of Applied Biology & Biotechnology 2021;0(00):1-84

During image pre-processing, an image is altered to provide more 
information about the affected area of a leaf. With good visual 
interpretation, it presents leaf image information effectively. This 
procedure does not modify the leaf image’s inherent information, 
but it does change the dynamic range of specific aspects for 
localization, allowing for a more accurate localization. Image 
resizing and filtering are the common pre-processing techniques 
used in banana leaf disease diagnosis. The captured leaf image in 
different resolution sizes are standardized to a fixed resolution size 
using image resizing. Image filtering is used to remove unwanted 
region in leaf images as there are more possibilities to have dust 
particles or due drops on the leaf. The filtering process is carried 
out using either a low pass or high pass filter. A low pass filter 
lessens the amplitude of high frequencies and has low frequencies 
unchanged. A high pass filter retains high frequencies and soothes 
the amplitude of low frequencies. Median filter and average filter 
are commonly used filtering techniques to reduce noise in an 
image. The pre-processed images are given to the segmentation 
which is described in the section below.
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After pre-processing, the segmentation is carried out. TGVFCMS 
technique is robust to noise and edge-preserving. Regularization 
of TGV images up to a specific order of separation is particularly 
beneficial for measuring image attributes like noise removal 
and edge sharpness. Our TGVFCMS was developed to include 
TGV regularization in the smoothing term in order to minimize 
undesirable noise and artifacts from FCM-based approaches. The 
following is the framework of TGV:
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3.4.1. CNN classification
It consists of different sorts of layers, such as a convolution layer, a 
ReLU layer, pooling layers, and output levels with fully connected 
output layers. An image’s borders and forms are recognized by 
CNN.

3.4.2. Convolutional layer
In CNN construction, the initial layer is always a convolutional 
layer. A CNN accepts M × N × 1 as an input layer. A two-dimensional 
image with single layers has a two-dimensional size of M × N. 
This filter has the same depth as the input image and is convolved 
with the image. As a result, the input image is convolved with this 
curve or form, resulting in the final image. During convolution, the 
shape that closely approaches the curve in the input image and is 
signified by the filter ends up with higher values. Equation (8) can 
be used to represent a convolution process as follows:

( ) ( )( )*s t x w t= � (8)

3.4.3. Pooling layer
To minimize the size of the data, a pooling layer is used. It includes 
dividing the matrix data into segments and replacing each segment 
with a single value. Figure 5 shows that the segmented matrices 
are swapped by the extreme or average of all values within the 
current segment.

3.4.4. Fully connected layer
Dimensional changes are made in a fully linked layer in order to 
accommodate the network layer architecture. Each dimension of 
input and output of a completely connected layer is connected to 
each other. All activations from a previous layer are passed on to 
the next layer, as it is in a typical ANN.

3.4.5. Softmax layer
When the Softmax function is called, input from preceding layers 
is translated into a possibility for the classes that total to 1. As a 
result, this layer plays a significant part in the anticipated output, 
as it is the class which has the largest possibility for the given data 
input. It is given as follows: 
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where ze j  is the standard exponential function for output vector 
and k is a number of classes in the CNN classifier. 

Images may be classified using deep neural networks. These 
networks are pre-trained to categorize different images, but they 
may be modified to meet our classification problematic via transfer 
learning by modifying essential parameters.

For all the networks, hyper-parameter training has been 
maintained. Multiple epochs (maximum 25) were used to divide 
data into segments. As the name suggests, mini-batch size is the 
sum of samples that are used to update a model’s parameters. 
Training mini-batch size was retained at 7 and initial learning rate 
was fixed at 0.0001.

4. RESULT AND DISCUSSION
The proposed system validations are carried out to test the 
effectiveness of each objective described in the sub-sections below.

4.1. Evaluation Metrics
For classification, the assessment criteria comprise sensitivity 
(SE), specificity (SP), and accuracy (AC). The performance 
criteria are defined as follows:

tpSE
tp fn

=
+ � (10)

tp tnAC
tp fp tn fn

+
=

+ + + � (11)

tnSP
tn fp

=
+ � (12)

where ,  ,  tp tn fp , and  fn signify the number of true positives, true 
negatives, false positives, and false negatives. 

4.2. Performance Analysis of Segmentation and Classification
Table 1 shows the initial performance analysis of the proposed 
TGVFCMS with CNN for the overall banana disease data set in terms 
of SE, SP, and ACC. Here, we compared the proposed method by 
having the whole data set without pre-processing and segmentation. 

Figure 5: Typical architecture of deep CNN.
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After that, the data set is trained with pre-processing and existing FCM 
segmentation, which is compared with our proposed TGVFCMS with 
CNN. Figure 6 shows the proposed method accuracy. 

From Table 1 and Figure 6, it is clear that CNN without pre-
processing achieved only 67.26% of SE, 78.04% of SP, and 
63.09% of ACC. The same CNN method increased 2% of SE and 
SP by training without segmentation. However, CNN trained with 
FCM segmentation and pre-processing achieved nearly 69% of 
SE, 79% of SP, and 89.69% of ACC. The SE, SP, and ACC are 
gradually increased (nearly 13%–17%) when the classifier CNN is 
trained with TGVFCM segmentation technique. This proves that 
our proposed hybrid segmentation technique of FCM achieved 

better performance than the existing FCM. Table 2 shows the 
performance analysis of CNN with other existing machine 
learning and deep learning practices; Figure 7 shows the graphical 
representation of CNN in terms of accuracy.

Here, the existing techniques, including LSTM, RF, ANN, DT, 
SVM, KNN, RNN, and auto-encoder, are compared with the CNN 
technique. Among these techniques, RF and DT achieved very low 
performance in terms of SE, SP, and ACC. The SVM, KNN, and 
ANN achieved nearly 63% of SE, 65%–70% of SP, and 71% of 
ACC, whereas RNN achieved better performance than LSTM in 
terms of SE. Auto-encoder achieved high performance than RNN 
and LSTM in terms of all metrics. But, the proposed CNN technique 
achieved 890.4% of SE, 96.38% of SP, and 93.45% of ACC. This is 
because CNN is trained with TGVFCMS segmentation technique, 
which has better performance than the other existing techniques.

5. CONCLUSION
Automatic identification and classification of illnesses in banana 
leaves are more accurate using image processing techniques. For 
disease diagnosis, these technologies eliminate the amount of time 
and money required to complete the project. Various leaf diseases 
and their symptoms are described in this paper. MATLAB is used 
to make a system for detecting banana plant diseases. The image 
acquisition, pre-processing, and segmentation phases are followed 
by the classification phase, which is then used to further classify the 
diseases. An affected area is segmented using TGVFCMS and then 
the classification of diseases on segmented images is carried out by 
using the CNN technique. The experiments are carried out on CIAT 
banana image library and validated with existing techniques in terms 
of SE, SP, and ACC. From the trial results, it is proved that the CNN 
method achieved 93.45% accuracy, where the existing techniques 
achieved nearly 75%–85% accuracy. In addition to replacing 
manual methods for identifying banana illnesses, this approach is 
more accurate than manual methods and will prove to be a valuable 
tool for farmers and plant pathologists in determining the disease 

Table 1: Performance evaluation of the proposed CNN with 
TGVFCMS.

Method SE (%) SP (%) ACC (%)
Without pre-processing 67.26 78.04 63.09
Without segmentation 68.15 78.27 78.62

With pre-processing and 
FCM segmentation 69.62 79.67 89.69

Proposed CNN with 
TGVFCMS 89.04 96.38 93.45

Figure 6: Graphical representation of proposed CNN with TGVGCMS in terms of accuracy.

Table 2: Performance evaluation of CNN.
Method SE (%) SP (%) ACC (%)

Random forest (RF) 51.33 57.33 60
Decision tree (DT) 59.41 60.12 62.54

Support vector machine (SVM) 63.51 65.20 60.39
ANN 63.76 71.43 73.54

K-nearest neighbor (KNN) 62.60 72.70 76.32
Recurrent neural network (RNN) 78.24 77.45 81.05

Long- and short-term memory (LSTM) 66.67 79.62 82.45
Auto-encoder 78.03 82.57 85.05

Proposed CNN 89.04 96.38 93.45
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and its control measures. As a result of this method, the production 
of crops will grow. The algorithm will be optimized for improved 
outcomes and great accuracy in the future. It is necessary to study 
and execute prevention techniques in order to increase the growth 
and output of banana plantations. In addition, as a future work, the 
algorithm should be improved to form an early warning system for 
banana diseases by collecting the data of climatic conditions, such 
as temperature, humidity, water level, soil conditions, etc.
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