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ABSTRACT 

Untargeted profiling of phytochemicals from plant extracts would aid in the exploration of various groups 
of compounds and assist in the identification of new bioactive compounds, reducing the redundancy in 
compound identification. The potential bioactive phytochemicals present in Myristica dactyloides, an endemic 
ethnomedicinal plant widely used in traditional treatment practices, were explored and cataloged in this 
study. The untargeted phytochemical profile of active methanolic leaves and bark extracts was assessed by 
Ultra high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-
flight mass spectrometry. Preliminary screening results highlighted the high efficiency of methanolic extract 
as an effective antioxidant and anti-inflammatory agent, along with a remarkable amount of total phenolics 
and flavonoid content. Thus, the methanolic extracts of leaves and bark samples were further subjected to 
catalog its chemical constituents through untargeted metabolite profiling. Analysis of high-resolution liquid 
chromatography-mass spectrometer spectra, exhibited 3,813 and 1,797 molecular features in the ESI+ mode 
with clean retention time-exact mass, resulted in identifying 35 major therapeutically important common 
compounds for the first time in both leaves and bark extracts of M. dactyloides, fitting to major groups 
like lignans, neolignans, phenylpropanoids, diarylnonanoid, flavonoids, and others. Our results prove the 
presence of Myoinositol, Malabaricone B, Malabaricone C, Malabaricone D, and 1-(2,6-dihydroxyphenyl)-
9-(4-hydroxy-3-methoxyphenyl) nonan-1-one previously reported from M. dactyloides, along with promising 
chemical signatures like Monotropein, Austrobailignan 7, Fragransol B, Guaiacin, Myricanone, Nectandrin A, 
Argenteane, and Epicatechin to the phytochemical catalog of M. dactyloides. Furthermore, our research not 
only confirms the existence of previously known molecules and adds new phytochemicals, but it also sheds 
light on the wide application of M. dactyloides for possible bio-prospecting for a new chemical entity.

1. INTRODUCTION
The dependence of humans on plants to survive or to treat has 
been inevitable in the long history of humanity on this planet, 
as shown by comprehensive documentation. Also, now, plants 
play an important part in the healthcare system as a treasure for 
bioactive compounds. The scientific community’s dedication 
to conserving natural treasures has risen as never before, and 
the current trend is to create sustainable and reliable solutions 
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to prevent overexploitation by providing target-specific 
treatment/isolation of compounds. The concept of distinguishing 
chemical entities from plants spawned a modern branch of 
science known as ethnopharmacology, which seeks to separate 
possible lead drugs from medicinally important plants [1]. 
Initially, pharmacological researchers in search of new bioactive 
compounds faced significant technological difficulties in 
extracting, isolating, and characterizing the compounds. Despite 
significant obstacles, researchers have been able to address 
methodological difficulties in characterizing plant metabolites 
from chemically diverged complex crude mixtures by continuing 
to work on studying the complex chemistry in plants. This was 
made possible by researchers advocating for the use of liquid 
chromatography–mass spectrometry techniques for untargeted 
phytochemical profiling in recent years [2–5]. Because of its 
accuracy, sensitivity, speed, and specificity, the ability of liquid 
chromatography with tandem mass spectrometry to couple with 
other chromatographic techniques provides many advantages in 
studying and characterizing the phytoconstituents of medicinal 
plants. Furthermore, advances in computational bioinformatics 
techniques and the development of online metabolite databases 
have made detection easier to an extent but with its limitations 
[6,7]. Plant metabolite characterization using chromatographic 
methods has advanced in recent decades, contributing 
significantly to the cataloging of a large number of metabolites 
from pharmacologically relevant plants. However, there is still 
a need to use chromatographic-based chemical fingerprinting 
extensively for a number of medicinally significant plants that 
have remained unidentified due to traditional extraction and 
identification procedures.

The current research is one such approach to cataloging and 
validating the chemical constituents of Myristica dactyloides 
bioactive potentials. It is a prominent member of the Myristicaceae 
family, native to India and Sri Lanka, with 18–21 genera and nearly 
300–520 species [8,9]. It is listed as vulnerable by the International 
Union for Conservation of Nature due to its widespread use and 
exploitation for its wide range of medicinal benefits. Coughs, 
bronchitis, fever, burning sensations, inflammation of joints, skin 
disorders, wounds, sleeplessness, indigestion, liver disorders, and 
worms are all treated with arils [10]. Bark and leaves are used in 
Ayurvedic preparations and decoctions to treat throat ailments [11]. 
Various researchers around the world have explored the chemistry 
and bioactive potentials of a similar species, Myristica fragrans 
[12]. Despite having the similar pharmacological potential to 
M. fragrans, M. dactyloides has remained unexplored except 
for a few early attempts [13–17]. In these reports, Myoinositol, 
Malabaricone A, B, C, D, Dactyloidin, Acylresorcinols, 
Arylalkanones, and Lignans were found in various parts of the M. 
dactyloides Gaertn.

With this background, the present investigation was carried 
out to catalog the chemical constituents of M. dactyloides 
using Ultra high-performance liquid chromatography coupled 
to electrospray ionization and quadrupole time-of-flight mass 
spectrometry (UHPLC-ESI-QTOF-MS) analysis and to validate 
their pharmacological significance through in-vitro assays in the 

context of M. dactyloides extracts anti-inflammatory potential. The 
study emphasizes the importance of early metabolite identification 
in crude extracts to prevent redundancy in the characterization of 
new bioactive compounds in drug discovery process.

2. MATERIALS AND METHODS

2.1. Chemicals and Reagents
All the solvents used for the extraction of plant materials 
were of analytical grade and hydrochloric acid was procured 
from Sisco Research Laboratory (Mumbai, India). Reagents, 
enzymes, and positive controls such as 2,2-diphenyl-1-picryl-
hydrazyl (DPPH), 2,4,6-tri (2-115 pyridyl)-s-triazine, Quercetin, 
gallic acid, Ascorbic acid (AC), butylated hydroxytoluene, 
15-Lipoxygenase (15-LOX) were purchased from Sigma-
Aldrich (St. Louis, MO). Solvents used for high-resolution 
liquid chromatography-mass spectrometer (HR-LCMS) were of 
Spectroscopic grade obtained from SD Fine Chemicals Limited 
(SDFCL; Mumbai, India).

2.2. Collection of Plant Material
Naturally grown healthy leaf and bark samples of M. dactyloides 
were harvested and collected from the Kigga village (13°24′50.8″N 
75°11′01.7″E) located at the Western Ghats region of Karnataka, 
India, during September month of the monsoon season. A sample 
specimen of the plant was deposited at the herbarium of the 
Department of Studies in Botany, University of Mysore, Mysore, 
India. Plant materials were collected in sterile polythene bags and 
processed within 12 hours at the laboratory.

2.2.1. Preparation of extracts
The leaf and bark samples were separated, washed under running 
tap water to reduce undesirable materials, followed by shade 
drying at room temperature for 5–6 days. The dried leaf and bark 
samples were ground to a coarse powder using the mechanical 
grinder and stored at 4°C until further use. The leaves and bark 
powders were sequentially extracted using 500 ml of solvents 
with increasing polarity (hexane < chloroform < methanol) by 
continuous hot percolation method using a Soxhlet apparatus 
(boiling point, 52°C–62°C) until the solvent became colorless. 
The solvent extracts were concentrated in a rotary flash evaporator 
(G1 Heidolph, Germany) under controlled pressure and stored at 
4°C before further analysis.

2.3. Phytochemical Analysis

2.3.1. Estimation of total phenolic contents (TPC)
Estimation of the TPC in plant extracts gives an overview of the 
phenolic compounds which indirectly are responsible for the 
bioactivity. TPC estimation was carried using the Folin–Ciocalteu 
reagent method according to Ainsworth and Gillespie [18]. The 
TPC of samples was estimated based on the standard gallic acid 
calibration curve with concentrations ranging from 0 to 250 μg/
ml. The results were expressed as mg gallic acid equivalents (mg 
GAEg−1) per 100 g of the sample.
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2.3.2. Estimation of total flavonoid contents (TFC)
The TFC were estimated by the aluminum chloride method [19]. 
Quercetin served as a positive standard and concentrations ranging 
from 0 to 500 μg/ml were prepared, and the standard calibration 
curve was developed using a linear fit curve. The results were 
expressed as mg quercetin equivalents (mg QEg−1) per 100 g of 
the sample.

2.4. Antioxidant Activity

2.4.1. DPPH radical scavenging
Evaluation of free radical scavenging capacity of the plant extracts 
was carried out by DPPH method [20]. Briefly, in a 96 well 
microtiter plate, 10 μl of different solvent extracts and AC were 
individually added to 95 μl DPPH (300 μM) solution in methanol. 
The absorbance of the samples was measured at 517 nm (Spectra 
Max 340PC Multimode plate reader) after the mixture was 
incubated for 30 minutes in dark at room temperature. The results 
were expressed as total antioxidant capacity and a dose-dependent 
curve was plotted to calculate the inhibitory concentration (IC50) 
value and expressed as mean ± standard deviation (SD) of three 
independent experiments along with the standard AC. The 
activity is represented as % radical scavenging calculated with the 
equation:

% DPPH radical scavenging = (Ac-As)/(Ac )×100

2.4.2. Ferric ion reducing antioxidant power (FRAP) assay
The reducing abilities of different leaf and bark extracts were 
determined by the FRAP method for the electron-donating ability 
of antioxidants [21]. An aliquot of 30 μl sample was mixed with 
90 μl water and 900 μl FRAP reagent and incubated at 37°C for 30 
minutes and the absorbance measures at 593 nm (Beckman Coulter, 
DU 730 Life Sciences). The calibration curve was generated using 
known ferrous sulfate contents ranging from 400 to 2,000 μmol 
and the ferrous ions reduced by the sample were calculated using 
a regression equation. The antioxidant activity was expressed as 
the amount of extract required to reduce 1 mmol of ferrous ions.

2.4.3. 15-LOX inhibition assay
Lipoxygenase with their products plays an important role as a 
mediator of inflammation with series of cellular pro-inflammatory 
and immune-modulatory responses. Inhibition of this enzyme would 
regulate the progression of inflammatory response. Evaluation of 
LOX inhibition was studied by a spectrophotometric assay with 
Soybean 15-LOX measuring the loss of soybean 15-LOX activity 
(5 μg) with 0.2 μM linoleic acid (Sigma) as the substrate prepared 
in a solubilized state in 0.2 M borate buffer (pH 9.0) [20]. Different 
concentrations of plant extracts were mixed with 15-LOX enzyme 
and incubated for 2 minutes at room temperature. The substrate 
was added to the mixture and the absorbance was measured at 243 
nm using a UV-Vis spectrophotometer (Beckman Coulter, DU 730 
Life Sciences). Values of hydroperoxide content and lipoxygenase 
activity were calculated from equation,

Specific activity (LOX) = ΔA. V/ε.l.c

where ΔA is the value of absorbance increase per minute, V is the 
volume of incubation mixture, ε is the extinction coefficient for 
linoleic acid (25 × 10–3 mol/l/cm), l is the length of the cuvette (1 
cm), and c is the concentration of enzyme in mg (0.005).

2.5. High-Resolution Liquid Chromatography-Mass 
Spectroscopy (HR-LCMS)
Metabolomics analysis was performed using a HR-LCMS, with 
UHPLC-ESI-QTOF-MS (Agilent Technologies, Santa Clara, CA). 
MassHunter LC/MS Data Acquisition software (version B.06.01) 
was used for controlling the instrument and data acquisition. 
MassHunter Qualitative and Quantitative Analysis software 
(version B.07.00) was used for data evaluation. All samples were 
filtered with a 0.2 μm nylon membrane filter before injection.

For the chromatographic separation, Zorbax Eclipse C18, (2.1 
× 150 mm 5-micron) column was used with gradient solvent 
system, (a) water with 0.1% formic acid and (b) acetonitrile with 
10% water + 0.1% formic acid (2–20 minutes-A) 95% B 5%, 
20–25 minutes (A) 5%, (B) 95%, and 26–30 minutes (A) 95%, 
(B) 5%) with 0.2 ml minute flow rate with pressure maintained at 
1,200 bar. The mass spectral data were acquired in electrospray 
in positive mode. The capillary voltage, source cone voltage, and 
extraction cone voltage were maintained at 3.25 kV, 30 V, and 4 
V, respectively, for positive mode. Nitrogen was applied as the 
desolvation gas at a flow rate of 900 l hours−1. The source and 
desolvation temperatures were maintained at 120oC and 550oC, 
respectively. Mass spectra were acquired over the m/z range of 
100–1,200 at a mass resolution of 22 000 FWHM (full-width half 
at maximum).

2.5.1. Data processing and identification
Raw data pre-treatment, including peak alignment, peak extraction, 
normalization, deconvolution, and compound identification, was 
carried out using Progenesis QI software (version 2.2, Waters, 
Milford, MA) with default settings. Untargeted data analysis with 
Progenesis QI exhibited 3813 and 1797 molecular features in the 
ESI+ mode with clean retention time-exact mass were obtained in 
each sample profile both in leaves and bark extract, respectively, 
which finally produced a matrix of features with the retention 
time, m/z, mass error, isotope similarity, and peak intensity. Each 
m/z value obtained both in the leaf and bark samples was searched 
against the in-house databases with different parameters set for 
putative identification based on the score with accurate mass 
matching, isotope similarity, and fragmentation score along with 
MS/MS data also included for the identification.

2.5.2. Building a custom in-house database

An in-house library of different metabolites was created through a 
literature search of previously reported metabolites from different 
species of the Myristicaceae family such as M. fragrans, Myristica 
malabarica, Myristica beddomei [12,22–24]. The structural and 
spectral information of metabolites were retrieved from different 
online metabolites databases like Metlin (https://metlin.scripps.
edu/) PubChem (https://pubchem.ncbi.nlm.nih.gov/), HMDB 
(https://hmdb.ca/), ChemSpider (http://www.chemspider.com/), 
CHEMEBI (https://www.ebi.ac.uk/chebi/) and ChEMBL (https://



Marulasiddaswamy, et al: HR-LC-MS based profiling of phytochemicals from Myristica dactyloides 2021;9(05):124-135 127

www.ebi.ac.uk/chembl/) in “.sdf” and “. mol” file formats. These 
structural files were examined individually for correct information 
and were combined as one file in “.sdf” file format using Progenesis 
SDF Studio software (v1.05667/43006), for the identification 
of metabolites through Progenesis QI software. Similarly, other 
databases like bio-molecules provided by the Waters Corporation 
also was used for the identification.

2.6. Statistical Analysis
All the experiments were conducted in triplicates, and a statistically 
significant difference was calculated using a one-way analysis 
of variance at p ≤ 0.001 followed by Tukey’s post hoc test with 
p ≤ 0.05 using IBM Statistical Package for the Social Sciences 
(version 25) software. Results were represented as mean ± SD.

3. RESULTS AND DISCUSSION

3.1. Screening and Chemical Characterization of 
Phytochemical Extracts
Difficulties and challenges in conventional procedures for the 
identification of total chemical signatures in a complex system have 
been advocated for decades. The present investigation is an effort 
towards simplifying the critical and complex procedures using modern 
analytical tools to characterize and dereplicate pharmacological 
essentials present in the vulnerable medicinal plant M. dactyloides. 
Initially, sequential extraction of metabolites from leaves and bark of 
M. dactyloides based on the polarity of the solvents using Soxhlet 
apparatus was achieved using non-polar (hexane), moderately polar 
(chloroform), and polar (methanol) solvents. Different solvent extracts 
of M. dactyloides leaves and bark were subjected for quantitative 
estimation of total phenol and TFCs and antioxidant activity along 

with 15-LOX inhibition of individual extracts for the selection of 
extract with a significant amount of bioactive chemical constituents. 
Results of quantitative analysis for TPC and TFC indicated that 
methanolic extract had the highest TPC and TFC content in both leaf 
and bark extracts (Table 1).

3.2. Radical Scavenging and Anti-Inflammatory Activities of 
Leaf and Bark Extracts of M. dactyloides
Efforts towards finding new anti-inflammatory and antioxidant 
molecules always remain a prime point in pharmacological 
research as they are very essential to combat inflammatory and 
oxidative stress-induced diseases [25–30]. As the antioxidant and 
anti-inflammatory potential of extracts substantially correlates 
with their biological significance [31], in the present study 
the leaves and bark solvent fractions of M. dactyloides were 
evaluated for their antioxidant efficiency via anti-radical (DPPH), 
reducing power (Ferric Reducing Antioxidant Power) assays 
and anti-inflammatory efficiency through LOX inhibitory assay 
model. Methanolic leaf and bark extracts have shown significant 
antioxidant activities with an IC50value of 1.48 and 6.88 µg/ml 
when subjected to scavenge DPPH free radicals, respectively 
(Table 2). They also have a significant reducing ability at 217.46 
mmol (FeII+)/g and 263.68 mmol (FeII+)/g, respectively. These 
results highlight a strong relationship between the total phenolic/
flavonoid contents of the extracts and their antioxidant efficiency 
[31]. Results of anti-inflammatory potential of M. dactyloides 
indicated significant inhibitory effects on LOX when treated 
with methanolic leaf and bark extracts which scored lowest IC50 
values of 2.4 and 10.4 µg/ml, respectively (Table 2). Since the 
methanolic leaf and bark extracts of M. dactyloides showed 
promising potential in neutralizing the free radicals and inhibiting 

Table 1. Total phenolic and TFC of leaves and bark extracts of Myristica dactyloides.
Sl. No. Sample TPC mg GAE/g (R2 = 0.9095) TFC mg QE/g(R2 = 0.9541)

1. Leaf-hexane – –

2. Leaf-chloroform 15.86 92.02

3. Leaf-methanol 53.13 119.47

4. Bark-hexane 18.92 43.58

5. Bark-chloroform 13.50 54.88

6. Bark-methanol 32.54 64.47

GAE/g = gallic acid equivalents (mg GAEg−1) per 100 g of the sample. QE/g = quercetin equivalents (mg QEg−1) per 100 g of the sample.

Table 2. DPPH IC50 value, ferric reducing antioxidant power assay, and LOX IC50 value of leaves and bark extracts of 
M. dactyloides.

Sl. No. Sample DPPHIC50 value µg/ml FRAP (mmol (FeII)/g extract) LOX IC50 value

1. Leaf-hexane 59.47 111.50 14.5

2. Leaf-chloroform 1.12 117.93 3.8

3. Leaf-methanol 1.48 217.46 2.4

4. Bark-hexane 31.93 126.51 15.1

5. Bark-chloroform 11.29 223.86 13.6

6. Bark-methanol 6.88 263.68 10.4

7. AC 1.61 350.76 9

IC50 = inhibitory concentration at 50% sample.
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LOX, these extracts were further subjected to metabolite profiling 
to catalog their important chemical constituents which may have 
potent bioactivities [32].

3.3. High-Resolution Liquid Chromatography Mass 
Spectrometry (HR-LC-ESI-MS/MS) Analysis of Bioactive 
Extract
Conventional methods of characterization of bioactive 
phytoconstituents involve series of steps that include extraction, 
evaluation, chromatographic separation, and spectroscopic 
characterization. However, due to the unavailability of suitable 
phytochemical standards, most of the researchers end up 
characterizing few known phytochemicals despite extensive 
effort and time. Hence unveiling the complex chemistry of 
bioactive crude extracts using high throughput and high-resolution 
techniques is a key to pinpoint the pharmaceutically potent bio-
actives and simplify the efforts to understand its action on the 
target. Among genus Myristica, there is overwhelming research 
on understanding the chemistry of Myristica fragrans, common 
name “nutmug,” due to its innumerable medicinal and bioactive 
applications [12]. However, in spite of its usage as a replacement 
constituent for M. fragrans, the efforts towards understanding 
the chemistry of M. dactyloides have remained considerably low. 
Hence in the present study, HR-LC-ESI-MS/MS was used in order 
to characterize the chemical composition of methanolic crude 
extracts of leaves and bark from M. dactyloides. Untargeted data 
analysis with Progenesis QI exhibited 3,093 and 1,797 molecular 
features in the ESI+ mode with clean retention time-exact mass in 
the sample profile of leaves and bark extract, respectively. For the 
identification of compounds, an in-house database of previously 
reported metabolites from different species of the Myristicaceae 
family such as M. fragrans, M. malabarica, M. beddomei 
[12,22–24] used with a mass accuracy of 10 ppm. Similarly, other 
databases like bio-molecules provided by the Waters Corporation 
also was used for the identification.

The representative base peak chromatogram of M. dactyloides 
leaf and bark extracts is depicted in Figure 1A and B and the 
phytochemical identification data is presented in Table 3, 
which summarizes the tentative compounds characterized from 
these extracts including their retention time, experimental m/z, 
mass, proposed metabolites, molecular formula, and reported 
activity. These compounds mainly belong to lignans, neolignans, 
phenylpropanoids, diarylnonanoid, flavonoids, and others.

The LC chromatograms of both leaves and bark showed a varied 
concentration of metabolites present in each extract, with leaves 
showing higher metabolite content compared to bark due to the 
production of metabolites based on light-dependent pathways and 
the abundance profile of representative compounds (Fig. 2) both in 
leaf and bark also supports the leaves showing higher metabolite 
content. Mass Fragmentation trace of representative compounds 
like Malabaricone C, Malabaricone B, Guaiacin, Myricanone, and 
Epicatechin along with their and structures are given in Figure 3. 
In addition, there are considerable number of metabolites present 
both in leaves and bark extract as only a few metabolites have 
been focused in the present study.

The HR-LC-ESI-MS/MS data highlighted the increased 
concentration of lignans and neolignane derivatives in the leaf 
and bark extracts of M. dactyloides. Lignans and neolignans 
are the derivatives of phenylpropanoids generated through 
oxidative coupling and are among the major group of plant 
secondary metabolites found in the genus Myristica [12,33]. 
The peak at m/z 390 was proposed to be Myrifralignan A, a 
compound identified in M. fragrans and reported to have nitric 
oxide radical scavenging activity [12,34]. A peak at m/z 360 was 
identified as Austrobailignan 7 (A7) the existence of which was 
also reported in M. fragrans, Urbanodendron verrucosum, and 
several other plant systems [35,36]. However, research efforts in 
unveiling the biological significance of this compound remained 
inconclusive compared to its analogs such as Austrobailignan 
1, Austrobailignan 3, Austrobailignan 5, and Austrobailignan 6 
which were extensively evaluated for their anti-inflammatory, 
antioxidant, anti-cancer, and anti-wrinkling activities [37–
40]. Peak at 295, with the mass of 330.1467 was proposed as 
Fragransol B which was only identified in M. fragrans and its 
biological significance has remained largely unknown. Peak at 
m/z 309 is identified as Machilin A, previously reported in the 
members of genus Machilus and Myristica and is a well-known 
inhibitor of cytochrome P450 1A and 2B6 [41,42]. 

Similarly, several other lignans and neolignans like Argenteane, 
(peak at m/z 619), Nectandrin A (peak at m/z 376), Myristicanol B 
(peak at m/z 405), Myrifralignan E (peak at m/z 383), Fragransin D1 
(peak at m/z 406), Sesamin (peak at m/z 337), Guaiacin (peak at m/z 
329) detected in the methanolic extracts of leaf and bark sample of 
M. dactyloides in the present study strongly advocate the potential 
of these groups of compounds for biological activities [12,34,43–
48]. Monotropein an iridoid glycoside tentatively annotated for the 
molecular ion at m/z 391.1238 (M + H) previously reported from 
the Morinda officinalis with well-established Antinociceptive and 
anti-inflammatory potential [49,50]. In addition, the present study 
also revealed the pharmacological richness in M. dactyloides 
wherein 25 bioactive chemical compounds other than lignans 
and neolignans were identified. These include alcoholic sugars, 
flavonoids, and steroids like Myoinositol, Methylisoeugenol, 
Monotropein, Parakmerin A, Eugenol, Anthriscinol, Syringic acid, 
Fragransol C, (+)-Epicatechin, Elemicin, Eugenol, Malabaricone 
D, (+)-Myristinin A, (+)-Myristinin D, 1-(2,6-Dihydroxyphenyl)-
9-(4-Hydroxy-3-Methoxyphenyl), Dihydroguaiaretic acid, 
4-Terpineol, Malabaricone C (Mal C), Malabaricone B (Mal B), 
Myricanone, Dodecanoylphloroglucinol, Safrole, Isoeugenol, and 
Daucosterol.

Myoinositol, Malabaricone B, Malabaricone C, Malabaricone D, 
and 1-(2,6-dihydroxyphenyl)-9-(4-hydroxy-3-methoxyphenyl) 
nonan-1-one which have been previously reported from the 
M. dactyloides have also been identified in the present study 
confirming their presence in the plant [13,14].

In addition to the above phytochemical constituents, the presence 
of compounds Mal C and Mal B, which are present in most of the 
members of genus Myristica potentially proves its consideration 
in developing a chemo-taxonomical library for the identification 
of this genus. Mal C is one among the extensively explored 
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chemical content predominantly present in genus Myristica, 
known for its possible therapeutic potential for treating cancer 
and inflammatory disorders [51,52], Alzheimer’s disease [53], 
and infectious diseases [54]. The present study also highlights the 
importance of exploring the bioactive potential of Mal B which 
is underutilized compared to Mal C. The presence of Mal C and 
Mal B in M. dactyloides may be responsible for the antioxidant 
and anti-inflammatory efficiency in the extracts recorded earlier in 
preliminary in vitro investigation.

The present investigation also added prominent chemical 
signatures like Monotropein Malabaricone B, Malabaricone 

C, Fragransol B, Guaiacin, Myricanone, and Epicatechin to the 
phytochemical catalog of M. dactyloides. Though the components 
like Malabaricone C, Monotropein have been studied extensively 
by researchers worldwide, the other chemical constitutes cataloged 
in this study are more promising for pharmacological industries 
facing challenges in the discovery of synthetic drugs which is 
known to be expensive and risky in terms of capital investment 
and side effects. The unexplored phytochemicals cataloged from 
M. dactyloides for their bioactive potentials represent novel 
natural interventions towards finding a solution for the industrial 
challenges.

Figure 1. LC chromatograms methanol extracts of (a) Bark and (b) Leaf of Myristica dactyloides.
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Table 3. List of major chemical constituents identified from methanolic extracts of leaves and bark of Myristica dactyloides using HR-LC-
ESIMS/MS.

Retention 
time 

(minute)
m/z Neutral 

mass Proposed metabolites Formula Adducts
Mass 
error 
(ppm)

Activity Reference

Lignans and neolignans

1.2717 390.1883 372.4116 Myrifralignan A Neolignan C21H24O6 M+NH4 −7.5 Anti-inflammatory [12,34]

2.0896 279.1354 296.1412 Parakmerin A (Lignan) C19H20O3 M+H-
H2O

−8.3 [55]

5.6954 209.0825 208.0735 Anthriscinol (Lignan 
phenylpropanoid)

C11H12O4 M+H 8.2 CC chemokine receptor 3 
antagonist

[56,57]

6.2463 321.1506 356.1623 Fragransol C(Neolignan) C21H24O5 M+H-
2H2O

6.03 [35,58]

7.8989 360.1792 342.1467 (+)-Machilin F (Lignan) C20H22O5 M+NH4 −3.84 [59]

9.201 295.1317 330.1467 Fragransol B (Lignan) C19H22O5 M+H-
2H2O

−3.42 [35]

10.3028 309.1470 326.1518 Machilin A (Lignan) C20H22O4 M+H-
H2O

−4.43 Inhibits tumor growth, 
stimulates osteoblast 

differentiation

[59,60]

13.1406 619.3038 654.3192 Argenteane (Dilignan) C40H46O8 M+H-
2H2O

−2.39 Antioxidant [43]

13.992 376.2147 358.1780 Nectandrin A (Lignan) C21H26O5 M+NH4 8.17 AMP-activated protein kinase 
(AMPK) activators

[45,61]

14.8768 348.2141 330.18319 Dihydroguaiaretic acid (Lignans, 
neolignans)

C20H26O4 M+NH4 −8.50 Antioxidant [62,63]

16.8967 405.1947 404.1835 Myristicanol B (Lignan) C22H28O7 M+H 9.79 Inhibit lipid peroxidation [46,58]

17.264 383.1499 418.1627 Myrifralignan E (Neolignans) C22H26O8 M+H-
2H2O

2.45 Inhibit nitric oxide production [12,34]

17.264 406.2260 388.1885 Fragransin D1 (Lignan) C22H28O6 M+NH4 9.27 [35]

17.3474 337.1091 354.1103 Sesamin (Lignan) C20H18O6 M+H-
H2O

5.83 Antioxidant, anti-inflammatory, 
anticancer

[47]

19.5844 365.1362 342.1467 Austrobailignan 7 (Lignan) C20H22O5 M+Na 0.91 [35]

21.8714 329.1752 328.1674 Guaiacin (Saponin, Lignans, 
neolignans)

C20H24O4 M+H 1.43 NeuroprotectiveAnti-
inflammatory

[64,65]

Phenylpropanoids

1.255 201.0902 178.1010 Methylisoeugenol 
(Phenylpropanoid)

C11H14O2 M+Na 9.2 Antinociceptive & anti-
inflammatory

[12,66]

3.8925 165.0919 164.0837 Eugenol (Phenylpropanoid) C10H12O2 M+H 5.6 Anti-inflammatory [67]

7.8822 226.1422 208.1099 Elemicin (Phenylpropanoid) C12H16O3 M+NH4 −7.07 [12,68]

7.9323 182.1188 164.0837 Eugenol C10H12O2 M+NH4 8.05 Anti-inflammatory [67]

21.6878 180.1003 162.0680 Safrole Phenylpropanoids C10H10O2 M+NH4 −9.75 Tyrosinase inhibitory [69]

28.8827 147.0816 164.0837 Isoeugenol (Terpenoid) C10H12O2 M+H-
H2O

7.23 Antioxidant [22]

Diarylnonanoid, diarylalkanone, and diarylheptanoid

8.4832 353.1743 370.1780 Malabaricone D (Diarylnonanoid) C22H26O5 M+H-
H2O

−1.02 [70]

13.3076 395.1810 372.1936 1-(2,6-Dihydroxyphenyl)-9-(4-
Hydroxy-3-Methoxyphenyl) 

Nonan-1-One (Diarylalkanone)

C22H28O5 M+Na −5.02 Antiproliferative [8, 24]

17.0637 359.1885 358.1812 Malabaricone C (Diarylnonanoid) C21H26O5 M+H 9.01 Anti-inflammatory [70,71]

17.0804 357.1714 356.1623 Myricanone (Diarylheptanoid) C21H24O5 M+H 5.07 Anticancer [72]

18.4826 343.1933 342.1831 Malabaricone B (Diarylnonanoid) C21H26O4 M+H 8.54 Antimicrobial, anti-
inflammatory

[70,73]

21.6377 309.2067 308.1987 Dodecanoylphloroglucinol C18H28O4 M+H 2.18 Antituberculosis & antiviral 
activity

[74]

Continued
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Retention 
time 

(minute)
m/z Neutral 

mass Proposed metabolites Formula Adducts
Mass 
error 
(ppm)

Activity Reference

Flavonoids and others

7.7988 291.0891 290.0818 (+)-Epicatechin (Flavanol) C15H14O6 M+H 9.6 Antioxidant, anti-inflammatory [75]

9.5516 571.2665 548.2774 (+)-Myristinin A (Flavan) C33H40O7 M+Na −0.18 COX-2 inhibitors and 
antifungal agent

[76]

10.837 565.2573 582.2617 (+)-Myristinin D (Flavan) C36H38O7 M+H-
H2O

−1.90 COX-2 inhibitors and 
antifungal agent

[76]

1.2049 203.0545 180.0653 Myo-inositol (Carbocyclic sugar) C7H8N4O2 M+Na 3.4 Anti-inflammatory [13,77]

1.8225 391.1238 390.1162 Monotropein (Iridoid glycoside) C16H22O11 M+H 1.02 Antinociceptive, anti-
inflammatory

[49,50]

5.7956 199.0600 198.0528 Syringic acid (Phenolic) C9H10O5 M+H −0.068 Antioxidant, anti-microbial, 
anti-inflammation, anti-cancer, 

anti-diabetic

[78]

15.1272 172.1706 154.1357 4-Terpineol (Isoprenoids) C10H18O M+NH4 6.82 Anticancer, antioxidant, anti-
inflammatory

[79,80]

27.18 541.4288 576.4389 Daucosterol (Terpenoid) C35H60O6 M+H-
2H2O

6.36 Immunoregulatory, anti-cancer [81,82]

Figure 2. Abundance profile of representative compounds from leaf and bark extract.
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4. CONCLUSION
The present study is a first report to the best of authors’ knowledge, 
on cataloging the chemicals constituents in leaves and bark 
methanolic extracts of M. dactyloides, and indicates chemical and 
bioactive resemblance between M. dactyloides and M. fragrans 
(Table 3). This evidently supports the current practice of using M. 
dactyloides as a viable alternative in pharmaceutical formulations 
of M. fragrans. The study also highlights the potential of modern 
analytical tools in cataloging chemical constituents within a genus 
of medicinally important plants, which may certainly aid in the 
development of a chemo-taxonomical database to authenticate 
and identify the plant species. The present investigation 
strongly advocates the importance of constructing a medicinal 

plant species-based chemical library which can be accessed by 
researchers for developing species-specific chemo-taxonomical 
tools in the future. This will in turn cut down the time taken for the 
characterization of bioactive compounds from natural resources.
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