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ABSTRACT 

The present study explored the morphological features of multipolar neurons in the lateral cortical area of 
the telencephalon of a catfish, Clarias batrachus, employing Golgi staining. In C. batrachus, the multipolar 
neurons have round to multiangular soma with axon emerged adjacent to either basal or apical dendrites. 
Branched apical and basal dendrites are of various thicknesses with few dendritic spines on them. Multipolar 
neurons have shown uniform distribution in both the center and toward the boundary of the lateral cortical area. 
The morphological features and position suggest that the role of this neuronal type in maintaining the local 
circuit as well as in transmitting information acting as projection neurons to the adjacent telencephalic region.

1. INTRODUCTION 

Neurons are the highly polarized cell types, which possess 
structurally and functionally different processes, and extended 
from the soma that mediates information flow through the nervous 
system such as dendrites and axons. An axon is a thread-like 
process that transmits signals to other neurons with the release 
of neurotransmitters that emerge from the soma, which is a 
single long process. From the soma emerge multiple branched 
processes known as dendrites. Dendrites contain neurotransmitter 
receptors to collect signals from adjacent connected neurons [1]. 
Neurons in which more than three dendrites arise from the soma 
and radiate in different angles or at different poles are known as 
multipolar neurons and their axon terminals contain pleiomorphic 
synaptic vesicles [2], a synaptic feature usually associated with 
an inhibitory neurotransmitter [3]. In mammals, after pyramidal 
neurons, the second position is acquired by multipolar neurons [4].

Multipolar neurons have a different structural configuration like 
long-tufted descending axons, elongated large axonal arborizations, 

small soma with short ascending, descending, or local axons, or 
with local or extended axonal arborizations in diverse layers of 
the cortex of mammals [5] and different cortical regions in the 
different genera of mammals [4,6–9]. Multipolar neurons are 
also well documented in other vertebrate classes – birds [10–13], 
reptiles [14–17], and amphibia [18,19] – but in fishes, there are 
limited studies on telencephalic neuronal morphology [20–22], 
including the lateral cortical area [21,22]. The telencephalic lateral 
cortical area of fish is equivalent to the mammalian hippocampus 
[23] where multipolar neurons are present [24]. However, in 
fishes, no morphological details on multipolar neurons are 
available according to relative abundance, soma shape, soma size, 
axon length, the diameter of dendrites, and spine density. So, in the 
present study, we elucidated these morphological parameters of 
multipolar neurons in the lateral cortical area of the telencephalon 
of a catfish Clarias batrachus, and further discuss with other 
reported vertebrate multipolar neurons.

2. MATERIALS AND METHODS

2.1. Animal Model
Clarias batrachus, a freshwater air-breathing catfish, lives in 
stagnant ponds, swamps, and hypoxic water with occasional trips 
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to the surface to take mouthful of air, and are carnivorous in nature. 
Clarias batrachus has economic importance for human beings as 
a food and also has medicinal value [25]. Since these fish survive 
in laboratory conditions and are mostly used in experiments in 
India, we used 10 adult C. batrachus, measuring 200–250 mm in 
length and weighing 200–250 g. Fishes were collected from the 
market of Prayagraj (formerly Allahabad, 25°28′ N, 81°54′ E) and 
acclimatized for 15 days in laboratory condition.

2.2. Golgi–Colonnier Method
Fishes were anesthetized by giving cold treatment and perfused with 
the 0.1 M phosphate buffer mixed with 4% of paraformaldehyde to 
fix the whole body with all vital organs including the brain. After 
perfusion, the brains were removed from the skull and again fixed 
in paraformaldehyde mixed 0.1 M phosphate buffer for 24 hours. 
After fixation, the brains were washed with gentle tap water for 18–
24 hours then the brains were prechromed in 2.5%–3% potassium 
dichromate. Brains were then kept in a 2% potassium dichromate 
and with 5% glutaraldehyde solution for chromation of 3 days. 
After chromation, the brains were transferred in 1% silver nitrate 
solution at normal room temperature for 2 days. Both chromation 
and silver steps were repeated thrice. After the completion of the 
third and final silver step, the brains were dehydrated by graded 
series of alcohol before being fixed in paraffin wax (congealing 
point 58°–60°C). Sections of 100 μm thick were cut with the help 
of a sliding microtome and were dehydrated in 100% alcohol 
before being washed in xylene, after which they were mounted 
and coverslipped using DPX. 

2.3. Statistical Data Analysis
Neurons were observed using a 40× magnification objective. 
Camera lucida of neurons were made with the support of a 
camera lucida equipment attached to the simple laboratory light 
microscope. Photographs were captured with the assistance of 
a computer-aided research microscope, a Nikon Eclipse 80i 
(Software, ACT-1) camera. All the photographs and camera lucida 
drawings were edited with the help of Adobe Photoshop 7.0.

All the neuronal parameters were measured with the support 
of Image J Software. Dendritic spine density was calculated by 
counting visible spines alongside 10 μm lengths of apical and basal 
dendrites from 30 neurons. The true number of estimated dendritic 
spines was calculated as described by Feldman and Peters [26]. 
Dendrites whose picture is clear and a plane parallel to the section 
were only considered for analysis. Quantitative measurement of 
morphological parameters was calculated with the assistance of the 
statistical software GraphPad PRISM version 5.1 (San Diego, CA) 
and differences were tested at a 95% significant level (p ˂ 0.05).

3. RESULTS AND DISCUSSION

3.1. Relative Frequencies of Multipolar Neurons
The present data of the percentage of multipolar neurons in C. 
batrachus (Fig. 1) shows that these cell types are the principal 
elements in the lateral cortical area of the telencephalon. Multipolar 
neurons accounting for 31.49% of the total neuronal population (n 
= 416) outnumbered all other neurons that are unipolar, bipolar, 

and pyramidal neurons and similarly as seen in visual wulst of 
birds where multipolar has maximum density [12]. However, in 
the case of reptiles [16], as well as in mammals [4], multipolar 
neurons are placed in the second position.

3.2. Soma Shape and Size
Table 1 shows the results (Fig. 2) of soma size (13.66 ± 0.84 µm 
long axis and 9.20 ± 0.49 µm short axis) as well as 10.25 ± 1.19 
µm soma diameter. Clarias batrachus have a short soma diameter 
than other vertebrates [4,12,16,27]. Biosynthetic and metabolic 
requirements of the entire cell with its dendritic arbor and axons 
determine the volume of neuronal soma [28]. Evolutionary 
enlargement of somata represents an increase in the thickness and 
ramifications of cell neuritis which might be playing a role in some 
aspects of locomotor adaptation [29]. Findings on soma shape 
show similarity with other vertebrates with a gradual increase in 
soma size from fish to mammal and all vertebrate fauna having an 
ovoidal, multiangular, polygonal, fusiform, and sometimes pear-
shaped multipolar soma [4,12,16,27].

Figure 1: Pie diagram showing the percentage of different types of neurons 
observed in the lateral cortical area of telencephalon of C. batrachus.

Table 1: Numerical values of different parameters of multipolar neurons of 
C. batrachus in the lateral cortical area of telencephalon.

S. 
No. Characteristics Numerical values

1 Soma size Long axis 13.66 ± 0.84 µm

Short axis 9.20 ± 0.49 µm

2 Soma diameter 10.25 ± 1.19 µm

3 Dendritic thickness Apical dendrite 1.20 ± 0.75 µm

Basal dendrite 0.99 ± 0.58 µm

4 Dendritic arborization 96.48 ± 51.38 µm

5 Axonal length 24.39 ± 1.31 µm

6 Number of visible spines 
(n)/10 µm length

4.86 ± 1.41

7 True number of estimated 
spines (N)/10 µm length

17.88 ± 1.46
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3.3. Dendritic Thickness
The thickness of apical and basal dendrites are found to be 1.20 
± 0.75 and 0.99 ± 0.58 µm, respectively (Table 1), showing that 
apical dendrite is thicker than the basal dendrite (Fig. 2) with 
almost isotropic dendrites similarly as found in Apteronotus 
leptorhynchus [22]. There is a gradual increase observed in the 
thickness of dendrites (both apical and basal) in all the vertebrates 
[4,13,16,27]. Increased thickness in dendrites suggests an adaptive 
mechanism to support the increased number of spines over their 
surface for rapid neuronal transmission [12].

3.4. Dendritic Arborization and Tree Shape
The dendritic arborization mean value with standard deviation 
in C. batrachus is 96.48 ± 51.38 µm (Table 1) greater than A. 
leptorhynchus [22]. The maximum branching order of dendrite 
is four to eight, but it is three to four in Onchorhynchus keta 
[21]. Apical and basal dendrites ramify to give rise to secondary 
branches. Apical dendrites are those dendrites that are directed 
toward the upper or outer boundary of the lateral cortical area or 
directed toward the other cortical areas of the telencephalon and 

making these neurons as projection type. Basal dendrites are those 
directed toward the dorso-central cortical area or the ventricle 
side in the presently studied fish. Some multipolar neurons are 
also found in the middle portion of the lateral cortical area which 
may serve as local circuit neurons or interneurons as reported in 
A. leptorhynchus [22] and in other vertebrates [11,13,24,30,31]. 
Multipolar projections create a circular to oblong or vertically 
elongated dendritic tree shape, while local circuit multipolar show 
a circular dendritic tree pattern in C. batrachus.

3.5. Axonal Length
The total observed mean length of the axon is 24.39 ± 1.31 µm 
(Table 1). The emergence position of an observed axon is not 
fixed in presently studied fish. Sometimes it is observed to emerge 
from the base of the soma and sometimes from the juxta somatic 
segment of the apical dendrite (Fig. 2A and A’) and sometimes 
from the juxta somatic segment of the basal dendrite similar to 
that of O. keta [21]. Axon collaterals were not seen during the 
whole observation but in amphibians, a clear long axon was seen 
emerging from the soma without collaterals [32]. In reptiles, the 
axon emerges from the soma or adjacent to the primary dendrite and 
gives off several distal collaterals which run along with distances 
over the cell layer and deepest part of the inner plexiform layer 
[16,17]. In birds, the axon mostly originated from the cell body 
and turned ventrally to the fiber bundle and ran parallelly to the 

Figure 2: Multipolar neurons observed in the lateral cortical area of 
telencephalon of C. batrachus. (A–C), golgi-stained neurons and (A’–C’) 

camera lucida of their corresponding golgi-stained neurons. Ax = axon; Ad = 
apical dendrite; Bd = basal dendrite; S = soma of neuron; and Sp = dendritic 

spine (scale bar = 50 µm).

Figure 3: Morphology of dendritic spines in multipolar neurons of C. 
batrachus at a higher magnification. (A–D) golgi-stained dendrites of different 

multipolar neurons and (A’–D’) camera lucida of their corresponding golgi-
stained neurons. C = cup-shaped; F = filopodium; Cl = club-shaped; M = 

mushroom; S = stubby; Sp = spike; T = thin (scale bar = 20 µm).
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ventricle [33], while in mammals long steep axon originated from 
the soma and branched into several axon collaterals with axonal 
buttons [34].

3.6. Dendritic Spine Density
Dendritic spines are the small post-synaptic protuberance on 
dendrites (Figs. 2 and 3). Spine density was calculated by two 
methods in 10 µm dendritic length. The first method is by counting 
the number of visible spines (n) and the second method is the true 
number of estimated spines (N) [26]. The visible spine density 
is 4.86 ± 1.41, while the true number of estimated spine density 
is 17.88 ± 1.46 in C. batrachus (Table 1). Spine density in C. 
batrachus is lower in comparison to other vertebrates [4,13,16,22] 
and can be correlated with its bottom-dwelling habit where 
mainly hypoxic condition is maintained [35]. In C. batrachus, the 
dendritic spines are very small, whereas in other vertebrates the 
dendritic spines are large. According to Harris et al. [36], large 
spines have large postsynaptic densities. By the study of spine 
density, it is concluded that over the dendritic field distribution 
of the spine on dendrites is uneven [37]. This finding is well in 
concordance with the present data on fish spine density which also 
shows an uneven distribution of spines on multipolar neurons. In 
C. batrachus, dendritic spines are mainly stubby, club-shaped, and 
various morphologies such as spike, mushroom, elongated club-
like, stubby, thin, cup-shaped, filopodium, and elongated spine 
neck were seen in other vertebrates [13,38,39] (Fig. 3).

4. CONCLUSION
There are similarities of the result in this study with the results of 
studies conducted in one Chondrichthyes [20] and two Osteichthyes 
fish [21,22]. More studies are needed to address the correlation for 
the entire fish fauna. Multipolar neurons of the presently studied 
fish are to some extent similar in morphological basis with higher 
vertebrates and differ by having lower values of all the parameters 
studied such as long dendritic arborization and spine density. The 
differences in these neurons of the presently studied fish with 
other higher vertebrates are due to diverse physical characteristics 
and phylogenetic dissimilarities/deviation because they exploit 
a wide range of ecological prospects and inhabit a wide variety 
of niches. This variation of ecological prospect and niches has 
evolved several times due to adaptation in diverse environmental 
conditions [40]. Thus, morphological deviation of the neurons 
could be correlated with the adaptation and a consequence of 
phylogenetic divergence. The findings of the present work will 
provide a base for upcoming research by connecting the behavior 
of fish with this particular neuron.
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