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Biodiversity and bioprospecting of  
extremophilic microbiomes for agro- 
environmental sustainability 
  
 

                icrobial communities live in a wide variety of 

environments, including natural normal conditions as well as 

extreme harsh environmental conditions of temperatures, salinity, 

water scarcity, and pH. To survive in such conditions, these stress 

adaptive microbes have developed adaptive properties to survive, 

multiple and produced bioactive compounds and secondary 

metabolites under the harsh/extreme conditions [1]. Extremophiles 

can live in some of the most aggressive environments on the Earth, 

with salinity (2-5 M NaCl; halophiles), pH (<4 acidophiles and> 9; 

alkaliphiles), temperature (-20 ° C to 20 ° C, psychrophiles/ 

psychrotrophic, 60 ºC to 115 ºC; Thermophiles/hyper-

thermophiles) [2, 3]. Polyextremophiles have capability to grow 

optimally under two or more harsh/extreme conditions. True 

extremophiles are members of archaea, although extremophiles 

belonging to the domains of bacteria and eukaryotes are also 

known. Overall, the extremophilic microbiomes belong to 

different phylum i.e. Euryarcheota, Crenarchaeota, Firmicutes, 

Proteobacteria Actinobacteria, Deinococcus-Thermus, 

Bacteroidetes, Basidiomycota, and Ascomycota (Figure 1). These 

microbial enzymes are of significance for many potential 

microbial biotechnological applications in, textile industries 

energy, agriculture, the environment, food industry, healthcare, 

and pharmaceutical due to the stability and activity of 

extremozymes under extreme harsh conditions  [4-6]. 

Microbial communities in diverse extreme habitats are 

physiologically adapted to harsh environmental stresses such as 

high/low temperatures, salinity/hypersalinity, drought, acidic/ 

alkalinity, UV radiation and diverse chemical stress [7]. Recently, 

microbial (archaeal, bacterial and fungal) communities in extreme 

harsh habitats have paying attention on applications in different 

areas such as white and green biotechnology, medicine and food 

production and food processing industry [8]. Extremophiles/ 

Stress-Adaptive microbes are classified as living microbes that 

survive or adapt in habitats under the stress conditions such as pH 

(acidophilic, alkaline), pressure (piezophiles), radiation (radiation 

resistance), redox potential  
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(xerophiles), salinity (halophiles), and temperature (psychrophilic, 

thermophilic) [9, 10]. The polyextremophilic microbiomes have 

capabilities to survive and growth on two of more stress and harsh 

environmental conditions. 

The beneficial extremophilic microbiomes plays 

significant role for agro-environmental sustainability as stress-

adaptive microbes have capability to produce agro-industrially 

important bioactive compounds such as indole acetic acids, 

gibberrellic acids, cytokinin, hydrogen cyanides, ammonia, 

siderophores, 1-aminocyclopropane-1-carboxylate deaminase and 

extracellular microbial hydrolytic enzymes (amylase, xylanase, 

pectinase, chitinase, cellulase and have very wide range of 

applications in different fields such as agriculture, dairy industry, 

biodegradation, biodegradation production, chemical processing, 

bioconversion of hemicellulose, molecular biology, composting, 

detergent industry, food industry, feed additives, feed industry, 

leather industry, paper and cellulose industry, peptide synthesis, 

pharmaceutical industry and therapeutic agents [11-13]. 

Extremophilic microbiomes are use in food and food processing 

industry as they have capability to produce wide range of bioactive 

compounds, secondary metabolites and value-added products such 

as flavors, food ingredients, and vitamins [14, 15].  

The biodiversity and distribution of extremophilic 

microbiomes living in harsh environmental situation has been 

extensively studied over the past several decades with an emphasis 

on culturable and metagenomic methods. There are many reports 

of the microbial biodiversity of extremophilic microbiomes such 

as xerophiles, halophiles, acidophiles, thermophiles, alkaliphiles, 

and psychrophiles [16-18]. Microbes from harsh habitats have          
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Fig. 1: Extremophilic microbiomes of diverse phylum isolated from a wide range of extreme habitats worldwide. Adapted with permission 
from Kour, et al. [44]. 
 
 

 

Figure 2: Extremozymes producing microbes and its biotechnological applications. Adapted with permission from Kour, et al. [44] 
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potential uses in agriculture, pharmaceuticals and related sectors. 

Microbial biotechnology of extremophiles may be opens up huge 

potential for future sustainability. Extremozymes have enormous 

economic biotechnological potential in many vital biological 

processes, including agriculture, pharmaceuticals, and chemistry 

(Figure 2).  

Among the extremozymes, amylases are one of the most 

important microbial hydrolytic enzymes produces by normal as 

well stress adaptive microbes for all starch-related industries. 

Enzymes also have great potential in the pharmaceutical and fine 

chemical industries [19]. Proteases are found in most of reported 

microbiome, from prokaryotes to eukaryotes and viruses, which 

are considered one of the commercially important hydrolytic 

widely used in detergents, food, pharmaceuticals, chemicals, 

leather and silk industry [20]. They help maintain ecological 

balance by composition and recycling of agro-waste [21]. 

Biotechnological refining with pectinases in combination with 

xylanases offers an environmentally friendly and economical 

alternative. 

Cellulases produced by stress adaptive microbes are 

currently the 3
rd

 largest industrial enzyme in the world due to their 

widespread use in diverse biological processing. These enzymes 

also used for recycling of paper, in the production of juices as 

washing enzymes and feed additives in food industry [22]. 

Microbial xylanases are widely used in the diverse biological 

process including production of animal feed, baked goods, 

biofuels, food products, feed and bleaching, as well as in the pulp 

and paper industry [23]. Microbes are some of the preferred 

sources of xylanases in industry because they offer many benefits. 

Lipases are extracellular enzymes produced by archaea, bacteria, 

yeast/molds, protozoa and other extremophilic microbiomes. The 

extracellular secretion of lipases is well established in diverse 

groups of fungal communities, mainly in Zygomycetes and 

Hyphomycetes [24, 25]. Microbial lipases are of marketable 

importance because of their wider availability from diverse groups 

of microbiomes, greater stability at diverse environmental 

conditions, and lower production costs as lipases obtained from 

animal and plant origins. Phytases produced by extremophilic 

microbiomes are a class of phosphatase that can release at least 

one phosphate from phytate at different environmental conditions 

[26, 27]. Extracellular phytate degrading enzymes produced by 

diverse groups of extremophilic microbiomes such as archaea, 

molds/yeasts, and bacteria have been reported worldwide [28]. 

The tiny organism of soil and diverse extreme habitats 

have several functional annotations like nutrients cycling and their 

fixation, mineralization and solubilization, alleviation of biotic 

caused by pest-insects, microbial pathogens as well as abiotic 

stresses by harsh environmental conditions, degradation of 

polluting elements in the environment [29, 30]. These soil 

microbes have also a have ability to alleviate various types of 

stresses of the environment i.e. biotic and abiotic. In biotic stresses 

alleviation, soil microbes used to control the different types 

biological pathogens growth like insects, bacteria and fungi by 

releasing various types of antibiotics and hydrogen cyanide, 

competing with the nutrients availability [31]. Whereas, in abiotic 

stress, soil microbiomes undergoes mechanism like release of 

ACC deaminase, reactive oxygen species by which various types 

of abiotic stress can be alleviated such cold stress, temperature 

stress, water stress weather flooding conditions or rain fed 

conditions, salt stress in the soil and available heavy metals.  

Extremophilic microbiomes play a vital role in the 

circulation of the plant nutrients. These microbes as bio-inoculants 

are being used across the world to improve yield and nutrient 

status of agro-ecological ecosystems. The beneficial plant–

microbe associations signify a promising sustainable finding to 

enhance productivity and reduce the diverse chemical fertilizers 

used [32]. On earth, various types of stresses like drought, 

temperature extremes like cold and hot, salinity, heavy metals and 

water flooding exists, which result reduction of plant growth and 

substantial decrease in crop yield and productivity [33]. Biotic 

stress is stress caused by micro and macro-pathogens such as 

bacteria, yeast/molds, virus, nematodes, insects, and weeds on 

plants. This stress usually contributes to huge economic losses 

caused of cash crops, due to this it is considered as a major subject 

of agricultural research. Abiotic stress is the stress created by 

adverse climatic conditions that also restrict the crop productivity. 

In nature, stress is a combined effect of multiple functioning unity 

rather than single incident [34].  

Low and high temperature are the diverse abiotic 

stresses. Among these and other stresses low temperature is 

considered as a major limiting factor as 20% of earth surface is 

filled with frozen soil, frozen soils (permafrost), glaciers and snow 

that adversely affects productivity of agricultural products. In 

agricultural sector, drought is one of the major problems [35]. In 

which crop productivity are greatly affected in the whole world of 

drought regions. Microbes are playing important role to 

controlling this stress as well once they have been isolated and 

thoroughly studied about their functionalities, such as their ability 

to withstand extremities and their genetic diversity, and methods 

are created for their use in farming. Therefore, inoculating plants 

with multifarious PGP microbiomes also would help to resolve 

drought in arid regions. Water flooding stress is the another abiotic 

stress which also an agricultural product destroyer factor. 

Generally, This stress mainly exists in rice producing fields areas, 

as every years one- fourth of the worlds rice land are inundated 

with volatile flash floods that now a day’s arise a few times a 

year’s [36].  

To survive the plants need oxygen (O2), but extreme 

flooding decreases the amount of O2 in the soil. Lower level of O2 

can limited the aerobic restoration. Water flooding also induced 

the accumulation of ethylene and, depending upon the light 

condition of submerged plants organs, raises the CO2 

concentration. Salinity is the key cause of environments stress that 

decreases agricultural, area yield and quality of the crops. Salinity 

has affected and depleted 20% of the earth’s agricultural land i.e. 

~45 million ha. The soil salinity rate is estimated to be 30% of the 

global agricultural lands [37]. Salinity is worst in the arid and 

semi-arid regions that cause osmotic stress, which also decreases 
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the growth and productivity of crops [38]. Stalinization usually 

occurs in two different ways i.e. natural causes and the secondary 

type is the result of human activity for agricultural production. 

According to the standard of the US department of agriculture, soil 

has an electrical conductivity of ds
m-1

 or higher can be classified as 

saline soil. Many studies has suggested that stress of salt as the 

main cause of the creation of drought-like condition due to water 

shortages, the creation of the payment of higher ionic content in 

plants, there by disrupting the usual physiological pathways and 

the lack of the other nutrients of soil due to high concentration of 

salt [39].   

The industrial revolution and anthropogenic actions, has 

resulted in drastic increase of heavy metals and radionuclide’s in 

the soil. The environment is continuously threatened by the use of 

persistent organic pollutants. Bioremediation is the method by 

which microbes interact with pollutant and degrade it [11, 21]. 

Microbes are cosmopolitan in their distribution and play a very 

important role in xenobiotic bioremediation [40]. Pollution 

remediation is also one of the functional abilities of the soil that 

helps in converting hazardous compounds in to less toxic 

compounds that can be degradable in the soil [41]. The 

bioremediation of aromatic pollutants like phthalate isomers, 

naphthalene, phenanthrene, benzopyrene is done by microbes 

mainly Acidovorax, Arthrobacter, Brevibacterium, Polaromonas, 

Mycobacterium, Rhodococcus, and Sphingomonas [30, 42, 43].  

In conclusion, agro-industrially important bioactive compounds 

and extremozymes from stress-adaptive microbes have been in 

great demand in agriculture and different industry. The 

biodiversity of stress-adaptive microbiomes (acidophilic, 

alkaliphilic, halophilic, metallotolerant, piezophilic, psychophilic, 

psychrotolerant, radiation-resistant, thermophilic, 

hyperthermophilic, toxotolerant and xerophilic) and extremozymes 

produced by extremophilic microbiomes have very diverse 

possible applications in various fields such as including food 

industries, agricultural industries, pharmaceutical industry, 

chemical industry, detergent industry, and leather industry. The 

area of application of extremozymes for biotechnological purposes 

is expanding over time. Looking up to the abilities and 

applications of soil microbes in the agriculture and environments, 

it can be concluded that these tiny-miracles can be utilized in the 

environment and agriculture field. The extremophilic microbiomes 

i.e stress-adaptive microorganisms are ever-present in nature and 

have been sorted from all the extreme habitats studies. The 

microbes from soil and air are useful for different processes in 

plant and ecosystems. The soil microbiomes have capability to 

nutrient acquisitions in plants for agro-environmental 

sustainability. In future also, these microbes can also replace the 

chemical based products, which will be support the sustainability 

and make earth more clean and green i.e. pollution free 

environment.  
. 
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