Comparative morphological, histological, and RAPD analysis of *Columba livia domestica* strains

Dalia A. Sabry¹*, Yosra A. Fouda¹²

¹Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt.
²Department of Biology, Faculty of Science and Arts, Qilwah, Baha University, Saudi Arabia.

ABSTRACT

The present study focused on the variations of morphological and cerebellar histological structures of five strains of adult male *Columba livia domestica* (*n* = 5) and their genetic polymorphism using RAPD-PCR technique to differentiate between them and find the best strains that can adapt to different circumstances. In each strain, the beak length and the eye diameter were measured in relation to the head length. Specimens of the cerebellum were fixed and processed for histological investigations. The thickness of the cerebellar cortex layers and the numbers of Purkinje cells was determined. For genetic polymorphism, 20 RAPD primers were used to determine the genetic diversity between the studied strains. Balady strain could express the best adaptation if subjected to feed restrictions; however, its low Purkinje cells number may reveal its low cognitive ability compared to the other studied strains. Primers OPA-1, OPA-3, and OPA-6 are the best used primers to differentiate between the studied strains. The highest similarity coefficient was detected between Halaby and Gamey strains, while, Balady strain was completely separated and independent. In conclusion, in addition to the morphological and histological variations between studied strains, the RAPD markers are recommended as a valuable tool to verify the genetic polymorphism of *Columba livia domestica* strains.

*Corresponding Author:
Dalia A. Sabry,
Department of Zoology, Faculty of Science,
Mansoura University, Mansoura, Egypt.
E-mail: drdsabry@hotmail.com

© 2020 Sabry and Fouda. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Hence, the present study is carried out to outline the genetic diversity of different *Columba livia domestica* strains collected from some bird breeders in Egypt.

2. MATERIALS AND METHODS

2.1. Studied Animals

In the present study, five strains of adult male *Columba livia domestica* (each strain consists of five individuals) (family Columbidae, genus *Columba*) (AL-Louse, 1960 and Chiasson, 1984) were collected from a known Farm of Dakahlea Governorate. The collected strains were about 1 year old, they were transferred in cages to the lab and they were free from any pathological lesions or abnormal morphological appearance. These strains are Halaby (1), Gamey (2), Australy (3), White Tumbler (Shaklabaz) (4), and Baladi (5). They were euthanized by overdose ether (according to the local experimental animal ethics committee, code number RZ 19003) and sacrificed by decapitation. The heads were dissected and the brains were removed and exposed to the following investigations.

2.2. Gross Morphology and Histological Investigation

The head and the brain of each strain were examined and photographed [Figure 1]. In each strain, the percentages of both the eye diameter and the beak length (from the beak tip until its base) to the head length (from the beak base until the neck corner) were determined. Furthermore, the beak overhang was measured. The dissected whole brains were photographed and differences between strains were recorded. Specimens of the cerebellum of the selected strains were fixed in 10% phosphate-buffered formalin (pH 7.4), dehydrated in ascending concentrations of ethyl alcohol, cleared in xylene, and mounted in molten paraffin wax (58–62°C). Five μm histological sections were cut, stained with hematoxylin and eosin stain and examined under bright field light microscope. The thickness of the cerebellar cortex layers and the numbers of Purkinje cells were measured.

2.3. DNA Extraction

Specimens of the brains of the studied strains were kept in the refrigerator at –20°C. The frozen brains were grinded and DNA extraction was carried out using QIAamp DNA Mini Kit (Cat. No. 51304, Qiagen, Germany). These were done by grinding about 25 mg of frozen tissue with liquid nitrogen in a mortar and pestle and transfer in micro-centrifuge tube containing 180 μL buffer ATL, 20 μL proteinase K (600 mAU/ml solution), and incubate for 2 h at 56°C till complete lysis. After centrifugation, 200 μL ATL was added and incubated at 70°C for 10 min, followed by adding of 200 μL ethanol (96–100%). The mixture was applied to QIAamp mini spin, centrifuged at 6000 ×g (8000 rpm) for 2 min then the filtrate was discarded. 500 μL buffer AW2 was added to the column then centrifuged at 20000 ×g (14000 rpm) followed by adding 200 μL buffer AE and incubate at room temperature and centrifuge at 6000 ×g (8000 rpm) for 3 min.

2.4. Random Amplified Polymorphic DNA (RAPD)-PCR

To determine the genetic diversity between the different studied strains of *Columba livia domestica*, 20 RAPD primers were carried out for all the individuals (OPA1 to OPA10 and OPB1 to OPB10). All primers were purchased from Metabion International AG, Germany. The primers list with their sequence is shown in Table 3. The isolated DNA from the studied strains is considered as a template of DNA. The PCR mixture consists of Emerald Amp GT PCR master mix (2X Premix) 25 μl, template DNA (<500 ng), forward primer (0.2 μM), reverse primer (0.2 μM), and 50 μL distilled water. The PCR amplification conditions were 94°C for 5 min (initial denaturation), then 40 cycles of denaturation at 94°C for 30 s, followed by 30 s annealing at 35°C (for OPA3-OPA5, OPA7, OPA8, OPA10, OPB1, OPB2, OPB4) or at 37°C (for OPA1, OPA2, OPA6, OPA9, OPB3, OPB5-OPB10) after that extension was made at 72°C for 30 s. Finally, final extension at 72°C for 7 min.

2.5. Statistical Analysis

The data were presented as means ± standard deviation using ANOVA test and post hoc analysis using SPSS and expressed in Tables 1 and 2. The base pair values were used to perform agglomerative hierarchical clustering (ACH) of the different studied strains using similarity Pearson correlation coefficient using XLSTAT software (2015). Bands are considered as “polymorphic bands” if they are present in some strains and absent in another. If the polymorphic band is present in Gamey (B) compared to the other strains, the longest beak in Balady strain and the most prominence cerebellar folds in Shaklabaz.
only one strain and absent in the others, it will be called a unique band. If the band is present in all strains, it will be considered as “monomorphic” band.

3. RESULTS

3.1. Gross Morphology, Morphometry, and Cerebellar Histology

From Table 1, the studied strains showed significant differences in both eye diameter and beak length in relation to head length. Halaby exhibited a significantly ($P < 0.05$) widest relative eye diameter compared to the other strains while Gamey showed the narrowest one [Figure 1]. Concerning the relative beak length, Gamey strain had the shortest beak while Balady had a significantly ($P < 0.05$) longest one compared to the other strains. The studied strains showed a similar horny operculum covering the base of the beak. However, both Australy and Shaklabaz showed significantly ($P < 0.05$) the longest maxillary overhangs compared to the other studied strains. Feathers like bristles were detected at the base of the beak of Shaklabaz strain [Figure 1].

The cerebellar cortex of the examined *Columba livia* strains composed of a molecular layer situated externally followed by internal granular layer and between the two layers there is a Purkinje cell layer of one cell thick [Figure 2]. The cerebellar cortex of Balady strain appeared significantly ($P < 0.05$) thicker than the cortex in Gamey and Australy, while, Purkinje cells in Balady strain had significantly ($P < 0.05$) the fewest number compared to the other four strains [Table 2 and Figure 2].

3.2. RAPD-PCR

The used 20 primers produced 95 RAPD bands (the total number of produced bands) with an average 4.75 per primer. The produced bands ranged from 235 and 1732 bp (base pair). Primer OPB-6 produced the highest number of bands (8). The prepared specimen of Halaby produces the highest total bands number with the used primers (75 DNA bands), followed by Shaklabaz (73 DNA bands), Gamey (71 DNA bands), and then Balady (67), while Australy had the least number (47 DNA bands) [Figures 3-6]. Table 3 shows that primers altogether produced 30 monomorphic bands for the studied five strains, while, the number of polymorphic bands was 65. The polymorphic

Table 1: Morphometric analysis of the beak and eye region of the studied strains.

<table>
<thead>
<tr>
<th>Strains</th>
<th>The percentage of eye diameter to head length (%)</th>
<th>The percentage of beak length to head length (%)</th>
<th>Overhang length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Halaby</td>
<td>21.44±2.5a</td>
<td>32.37±0.83a</td>
<td>2±0.2a</td>
</tr>
<tr>
<td>(2) Gamey</td>
<td>15±0.83a</td>
<td>22.92±0.84ab</td>
<td>2±0.2a</td>
</tr>
<tr>
<td>(3) Australy</td>
<td>20.98±1.49bc</td>
<td>27.27±1.14ac</td>
<td>4±0.3bc</td>
</tr>
<tr>
<td>(4) White Tumbler (Shaklabaz)</td>
<td>17.36±1.13ac</td>
<td>27.17±1.13ad</td>
<td>3±0.5ac</td>
</tr>
<tr>
<td>(5) Balady</td>
<td>17.39±0.87ac</td>
<td>33.48±1.31ad</td>
<td>2±0.2a</td>
</tr>
</tbody>
</table>

Data are presented as means ±SD. The mean difference between strains is significant at $P < 0.05$. The same superscript letters mean significant difference.

Table 2: Morphometric analysis of the cerebellar cortex of the pigeon strains.

<table>
<thead>
<tr>
<th>Strains</th>
<th>PC Number</th>
<th>Thickness of ML (µm)</th>
<th>Thickness of IGL (µm)</th>
<th>Thickness of cerebellar cortex (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Halaby</td>
<td>8.75±0.5a</td>
<td>147.50±20.62</td>
<td>140.00±67.3</td>
<td>296.25±52.1</td>
</tr>
<tr>
<td>(2) Gamey</td>
<td>10.00±1.4b</td>
<td>135.00±19.15</td>
<td>105.00±46.6</td>
<td>250±45.8b</td>
</tr>
<tr>
<td>(3) Australy</td>
<td>8.75±1c</td>
<td>135.00±36.97</td>
<td>107.50±59.1</td>
<td>251.25±57.7b</td>
</tr>
<tr>
<td>(4) White Tumbler (Shaklabaz)</td>
<td>9.50±1d</td>
<td>167.50±20.6</td>
<td>145.00±71.4</td>
<td>322±65.2</td>
</tr>
<tr>
<td>(5) Balady</td>
<td>6.75±1ad</td>
<td>162.50±37.7</td>
<td>167.00±2</td>
<td>334.25±45.3b</td>
</tr>
</tbody>
</table>

The mean difference is significant between strains at $P < 0.05$. The same superscript letters mean significant. PC: Purkinje cell, ML: Molecular layer, IGL: Internal granular layer. Data are presented as means ±SD.

Figure 2: Photomicrograph of sagittal histological sections of cerebellar cortex of different *Columba livia* strains; Halaby (A&A1), Gamey (B&B1), Australy (C&C1), Shaklabaz (D&D1), and Balady (E&E1). Note: Comparative differences in the thickness of the molecular and internal granular layers between the studied strains. The least Purkinje cell number in Balady strain. Abbreviations: PC, Purkinje cell; ML, Molecular layer; IGL, Internal granular layer; WM, White matter.
bands included (15) polymorphic unique bands and (50) polymorphic without unique bands.

Concerning primer OPA-1, the studied strains exhibited wide expression of DNA bands of varying densities ranged from 260 bp to 960 bp (Halaby - 5 bands, Gamey - 3 bands, Australy - 0 bands, Shaklabaz - 2 bands, and Balady - 3 bands). The studied strains exhibited three monomorphic DNA bands with primer OPA-2 while Balady strain exhibited additional two unique bands. With regard to OPA-3, Balady, Gamey, and Shaklabaz strains expressed four bands at similar base pair, while, Australy expressed only one band and Balady exhibited five bands [Figure 3a]. Primer OPA-4 showed four monomorphic bands and three polymorphic bands with the studied strains. Balady strain exhibited no DNA bands with primer OPA-5 while, there was a varying in the expression of DNA bands density and number between the studied strains (Halaby - 4 bands, Gamey - 6 band, and both Australy and Shaklabaz - 5 bands). In primer OPA-6, all of Halaby, Gamey, and Australy expressed no DNA bands [Figure 3b]. Primer OPA-7 showed no DNA bands with Australy and Shaklabaz while the other strains exhibited three bands at the same base pair.

Primer OPA-8 expressed one monomorphic band at 1000 bp, one polymorphic band and a single unique band for Balady strain [Figure 4a]. Primer OPA-9 expressed 4 DNA bands for Gamey, three bands for both Halaby and Balady and only one band for both Australy and Shaklabaz. The studied strains exhibited varying densities and band numbers with primer OPA-10, which expressed six bands three polymorphic bands and three monomorphic bands [Figure 4b].

Concerning primer OPB-1, Halaby strain exhibited a considerable number of DNA bands (7 bands), Gamey expressed three bands, both Australy and Shaklabaz expressed four bands, and the least number of bands expressed by Balady strain (two bands). All studied strains exhibited no DNA bands with primer OPB-2 except Shaklabaz which showed two specific bands. Australy produced only one DNA band using primer OPB-3 while both Halaby and Balady produced five bands and both Gamey and Shaklabaz produced six DNA bands [Figure 5a]. Primer OPB-4 exhibited three monomorphic bands with all studied strains. Primer OPB-5 expressed 5 DNA bands classified into three monomorphic bands and two polymorphic bands. Primer OPB-6 expressed a varying number of DNA bands among the studied strains. Halaby exhibited the highest number of bands (Halaby - eight bands, Gamey and Shaklabaz - seven bands, Balady - five bands, and finally Australy - three bands) [Figure 5b]. Primer OPB-7 exhibited four monomorphic bands and one polymorphic band.

Primer OPB-8 exhibited three bands; one monomorphic band and two polymorphic bands at 470 and 1040 bp [Figure 6a]. Primer OPB-9 showed one polymorphic band at 500 bp and one band specific for Shaklabaz at 1730 bp. Primer OPB-10 exhibited four monomorphic bands ranged between 400 bp and 1200 bp [Figure 6b].

Focusing on the unique bands; Primer OPA-1 produces a specific unique band for both Halaby and Balady at base pair 650 and 960,
respectively. Each of primers OPA-2 and OPA-3 showed two unique bands for Balady strain. These bands produced at base pair 710 and 1130 for the first primer and at base pair 470 and 763 for the second one [Figure 3a]. OPA-6 produced three unique bands; one band for Shaklabaz at 1370 bp and two bands for Balady at 750, 800 bp [Figure 3b]. Primer OPA-8 produced only a unique band for Balady at 470 bp [Figure 4a]. Primer OPB-1 produced two specific DNA bands for Halaby at 260, 370 bp. Furthermore, primer OPB-2 produced two specific DNA bands for Shaklabaz at 560,730 bp [Figure 5a]. Primer OPB-9 produced a unique band for only Shaklabaz strain at 1730 bp [Figure 6b]. The other 12 used primers generated no specific band markers.

Figure 7 and Table 4 illustrated the genetic relationship between the strains. The similarity matrix between the studied samples ranged from 0.22 to 0.67. The highest similarity coefficient was detected between Halaby and Gamey strains and reached (0.67) while the lowest one was between Australy and Balady (0.22). Balady strain was completely separated and independent from the other strains.

4. DISCUSSION

The present work shows that the studied *Columba livia domestica* strains are significantly varied from each other depending on morphological criteria such as eye diameter and beak lengths in-relation to head length. The variations of beak morphology may be related to genetic history, phylogeny development on skull components [31], feeding ecology, and adaptive capability [32]. Savas et al. [33] reported that pigeons of short beaks spent longer time during food consumption and preening behavior (as the releasing of parasites and dirt) if compared to birds of long beaks. They added that, during feeding restrictions, pigeons of short beaks show aggressive pecking and loss of weight. The studied Balady strain expressed a significant increase in the relative beak length compared to the other studied strains while Gamey showed the shortest one. Hence, Gamey might face feed intake problems if subjected to feed restrictions more than the other studied strains, while Balady strain could express the best adaptation.

The Australian pigeons exhibited the longest overhang which seemed to be helping it for controlling against their body lice, as ectoparasites, more than the other studied strains with shorter overhang, this explanation agrees with Clayton et al. [34] who illustrated that, birds trimmed by removing their overhangs had significant loss of their feather mass.

Brooke et al. [35] reported that speed is not the only significant factor of eye size. Behavior and ecology are also determinative. He added that owl has a large eye to provide wide pupil that enhance vision at night, while, raptors have big eyes that provide an acute vision to detect preys. Thomas et al. [6] explained that birds adapt their eyes depending on their habitat, size of preferred food, and the cycle of diurnal activity. In the present work, Halapy strain showed a significantly widest relative eye diameter if compared to the other studied strains which could refer to its higher speed or acute vision.

The cerebellum manages the function of locomotor system as well as control the relation between the motor and sensory pathways [11,36].
Table 3: Numerical data based on the RAPD-PCR technique among the studies strains.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>TB</th>
<th>MB</th>
<th>PB</th>
<th>UB</th>
<th>%PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPA-1</td>
<td>CAGGCCCTTC</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>OPA-2</td>
<td>TGCCGAGCTG</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>OPA-3</td>
<td>AGTCAAGCCAC</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>OPA-4</td>
<td>AATCCGGGCTG</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>OPA-5</td>
<td>AGGGGTCTTG</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>OPA-6</td>
<td>GTTCCTGGAC</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>OPA-7</td>
<td>GAAACGGGTCG</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>OPA-8</td>
<td>GTGACGTAGG</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>OPA-9</td>
<td>GGTAACGCC</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>OPA-10</td>
<td>GTGATCGCACG</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>OPB-1</td>
<td>GTTCCGCTCG</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>86</td>
</tr>
<tr>
<td>OPB-2</td>
<td>TGTCCGCTG</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>OPB-3</td>
<td>CATCGCTG</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>83</td>
</tr>
<tr>
<td>OPB-4</td>
<td>GACTGGGAT</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OPB-5</td>
<td>TGCCTGCTGC</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>OPB-6</td>
<td>TGCTCTGGCC</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>OPB-7</td>
<td>GGTAGCGCAG</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>OPB-8</td>
<td>GCTCAACGG</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>OPB-9</td>
<td>TGGGGACCTC</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>OPB-10</td>
<td>TGCTGGGAC</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>95</td>
<td>30</td>
<td>65</td>
<td>15</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.67</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.49</td>
<td>0.41</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.33</td>
<td>0.54</td>
<td>0.36</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.38</td>
<td>0.40</td>
<td>0.22</td>
<td>0.23</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Numbers from 1 to 5 refer to the different strains; Halaby (1), Gamey (2), Australy (3), Shaklabaz (4), and Balady (5). The highest similarity coefficient was detected between Halaby and Gamey strains and reached (0.67) while the lowest one was between Australy and Balady (0.22).

The present study showed that Balady strain exhibited the least number of Purkinje cells in comparison with the other strains. Iwaniuk et al. [12] explained that cognitive ability, managing functional activity, and behavioral complexity increase as a result of increasing number of Purkinje cell. This may reveal that Balady strain had the least cognitive ability if compared to the other studied strains. Sur et al. [38] attributed the variations of cerebellar structure of bird strains to ecological, behavioral, and flying skills variations. Hence, the present data could be useful to comparative and behavioral biologists.

RAPD-PCR analysis revealed that primers OPA-1, OPA-3 (expressed six polymorphic bands including two unique bands with the studied strains), and OPB-6 (expressed five polymorphic bands including three unique bands with the studied strains) are the best used primers to differentiate between the studied strains. Patel et al. [39] explained that the appeared polymorphism is predominating due to the genetic variations which represent a number of alleles at a specific locus in a population. The studied Halaby and Gamey strains were clustered together with the highest similarity coefficient, which may be attributed to their close genetic relationship, while the most far genetic relationship was for Australy and Balady. The genetic diversity may be due to the climatic and geographical distribution [40] or even due to mutations, migration, and strains adaptation [41]. El-Megawy et al. [42], Hameed et al. [43], Singha et al. [44], Chowdhury et al. [14], and El-Bakoshi and Ahmed [45] recommended RAPD-PCR for the assessment of genetic diversity in genus Rhynchosporus ferrugineus, Bemisia tabaci, Fusarium sp., and Ocimum and Peganum harmala L., respectively.

5. CONCLUSIONS

The present study revealed that although Balady strain could express the best adaptation if subjected to feed restrictions; however, its low number of Purkinje cells may reveal that it had the least cognitive ability if compared to the other studied strains. Australian pigeon characterized by having the highest control against their ectoparasites compared to the other studied strains. This was assessed by its long overhang. Hatched Balady strain needs longer time for parent’s care.

The genetic relationship between the studied strains.

The thickness of the molecular and internal granular layers in the cerebellar folia of the studied strains ranged from 135 µ–167.5 µ to 105 µ–167 µ, respectively. Pal et al. [37] recorded that the thickness of the molecular and granular layers in the cerebellum of human was 227 µ–343.5 µ and 389.5 µ–215.2 µ, respectively, while hen values were 196 µ–294 µ and 330 µ–215 µ, respectively. recorded that altricial strains would have higher thickness of cerebellar cortex of Balady strain compared to the other studied strains. This was assessed by its long overhang. Hatched Balady strain needs longer time for parent’s care compared to the other studied strains. This was assessed by its long overhang.
compared to Gamey and Austry as a result of its higher cerebellar cortex thickness. Furthermore, primers OPA-1, OPA-3, and OPA-6 are the best used primers to differentiate between the studied strains. Also, the highest similarity coefficient was detected between Halaby and Gamey strains, while, Balady strain was independent. Hence, the findings of the present study indicate that, in addition to the variations of morphological and histological structures, the RAPD markers are recommended as a valuable tool to verify the genetic polymorphism of *Columba livia domestica* strains.

6. ACKNOWLEDGMENTS

The authors would like to thank molecular biology lab and electron microscope unit in Mansoura University for the cooperation to support research.

7. CONFLICTS OF INTEREST

Authors declared that they do not have any conflicts of interest.

REFERENCES

How to cite this article: