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ABSTRACT 

Mycorrhizal association is an integral part of terrestrial ecosystems. The present work was focused to examine 
arbuscular mycorrhiza (AM), dark septate endophyte (DSE) fungal colonization, and the composition of AM 
fungi from two home gardens of Tripura in Northeast India. The results reveal eight plants commonly occurring 
in two sites belonging to seven families. Of the eight plants, dual colonization of AM and DSE fungi was 
observed in seven plants from two sites. A total of 18 AM fungal species were recovered from both the sites. 
The study reveals a robust composition of AM fungi in the home garden ecosystem. AM fungi isolated from 
these ecosystems confirm their occurrence and these fungi may be beneficial in improving the cultivation 
practices in the home garden systems of the region.

1. INTRODUCTION
Arbuscular mycorrhiza (AM) have a symbiotic association between 
soil fungi of the phylum Glomeromycota [1] and plant roots, 
which is ubiquitous in the terrestrial ecosystem [2]. It is generally 
accepted that AM fungi can help in the uptake of plant nutrient like 
phosphate [3], defend plants against various types of stress [4,5], 
and decrease the damage caused by root pathogens [6].

There are a group of fungi belonging to ascomycetes called the 
dark septate endophyte (DSE) fungi that colonize root tissues 
intracellularly and intercellularly [7] and characterized by 
microsclerotia and septate melanized hyphae [8]. The common 
occurrence and are likely to function as mycorrhizal fungi suggest 
that these endophytes are vital components of natural ecosystems 
that co-colonized with AM fungi in the same host plants [9,10].

Home gardens are considered as one of the oldest subsistence 
farming systems practiced by rural communities in many parts 
of the world, consisting of multilayer systems of trees, shrubs, 

and herbs around homesteads [11,12]. Home gardens are 
generally multifunctional and play key roles in providing goods 
and ecosystem services and also provide numerous benefits for 
sustaining the livelihood of local inhabitants [13,14]. 

Mycorrhizal fungi have been studied from forest ecosystems 
in relation to its ecology and diversity [15–17]. Mycorrhizal 
associations regarding nutrient status, colonization, and diversity 
have been studied from plantations and agricultural soils [10,18–
23].

The cultivation of fruits, vegetables and ornamental plants 
in home gardens has a long tradition in Northeast India, 
especially among the people residing in the states of Assam, 
Manipur, Nagaland, Meghalaya, and Tripura. The diversity of 
AM fungi in home garden along with different land use system 
in Arunachal Pradesh has been reported recently [24]. The 
study of mycorrhizal associations in home garden has not been 
solely concentrated. Moreover, the colonization status by AM 
and DSE fungi of plants in the home garden is scarce [25]. 
Therefore, mycorrhizal colonization of commonly occurring 
plants and the composition of AM fungi from two home gardens 
was examined.
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2. MATERIALS AND METHODS

2.1. Study sites
The root of the plants and soil samples were collected from two 
home gardens of Tripura, Northeast India. The sites considered 
for this study were Khowai (24°0ʹ52.18″N; 91°36ʹ48.48″E; 23 
masl) and Amtali (23°46ʹ14.23″N; 91°15ʹ46.98″E; 22 masl). 
The sampling period of roots of plants and soil was during 
March–June 2016. 

2.2. Collection of root and soil samples 
The commonly occurring plants were selected for the assessment 
of AM and DSE symbiosis from both the sites. To assess the 
colonization in root samples, root from two to three plants of each 
species was collected and brought to the laboratory. Care was 
taken in sampling of root samples of plant species that the roots 
were traced to the target plants. The rhizospheric soil samples were 
collected at 0–20 cm depth around each species and approximately 
500 g soil per plant was collected. All the soil samples from each 
location were combined and collected in polythene bags, tagged, 
and brought to the laboratory for further analysis.

2.3. Analysis of soil properties
Soil moisture was determined by drying 10 g fresh soil at 100°C 
for 24 hours in a hot-air oven. For pH and electrical conductivity, 
10 g of soil was dissolved in 50 ml distilled water and stirred for 
20 minutes and kept it for overnight. Measurement of the soil pH 
and electrical conductivity was done by using a digital pH and 
electrical conductivity meter. Soil texture was determined by the soil 
hydrometric method [26]. Soil organic carbon (%) was determined 
[27]. Available phosphorus was estimated [28]. Soil organic carbon 
and available phosphorus were estimated by spectrophotometer 
(UV-VIS Biospectrometer, Eppendorf). There is no known 
history of fertilizer application in these home gardens. However, 
biodegradable wastes from the kitchen are used sometimes.

2.4. Preparation of roots and assessment of AM and DSE 
fungal colonization
The root samples brought from the home garden were thoroughly 
washed in tap water and cut into small pieces of approximately 1 
cm in size. Then the root pieces were processed and stained for 
observation of mycorrhizal colonization [29]. Root segments were 
then mounted with lactoglycerol on the slide and examined under a 
compound microscope (Olympus) for various AM and DSE fungal 

structures. The mycorrhizal structures were also photographed 
under Olympus CX21i fitted with camera and software, SImage 
in computer. The quantification of AM fungal colonization was 
done by the magnified intersection method and DSE fungi were 
measured together for microsclerotia and septate hyphae. One 
plant was assessed only for vesicles and aseptate hyphae with the 
same method [30].

2.5. Extraction and identification of AM fungi
Debris was removed from the soil brought from the field taking 
utmost care so that the soil attached to the litter and debris was 
not lost by this process. Fifty grams of soil was placed in the 
sieves of size 2 mm–35 µ and processed with tap water using the 
wet sieving and decanting method [31]. Then the spores were 
extracted from each sieve to the filter paper by filtering out the 
water. The spores on the filter paper laid on the 13.5 cm Petri dish 
and were counted under the microscope at 100× magnification. 
The spores were then picked up with a needle and mounted in 
polyvinyl alcohol-lactoglycerol on the slide [32]. Then spores 
were examined using a compound microscope. The identification 
of AM fungi was done based on morphological characteristics by 
matching with original descriptions and e-resources available on 
the website (www.amf-phylogeny.com).

2.6. Data analysis
For evaluation of AM fungi from the home gardens, spore density 
and species richness were measured. Student t-test was performed to 
assess the significance of means for soil chemical properties occurring 
at two sites. The colonization data were subjected to analysis of 
variance and the means were separated by Duncan test (p < 0.05). 
All the data were analyzed using the software, Statistica 9.0. 

3. RESULTS
The list of commonly occurring plants in two sampled sites is 
provided in Table 1. Eight plants were found growing in both the 
sites, of which four were fruit plants and four were vegetables 
belonging to seven families.

The soil pH was acidic in both the sites and soil from Khowai 
exhibiting the lower pH. Electrical conductivity, organic carbon, 
and available phosphorus were significantly (p < 0.05) higher in 
soil from Khowai than Amtali. Soil texture reveals a high amount 
of sand in Amtali. The texture indicates soil to be loamy sand of 
both the sites. The soil properties are presented in Table 2.

Table 1: Family and their uses of commonly occurring plants from two home gardens of Tripura.
Plants Family Habit Uses Flowering time Fruiting time

A. tricolor L. Amaranthaceae Shrub Vegetable Throughout the year Throughout the year

A. comosus (L.) Merr. Bromeliaceae Shrub Fruit April–May June–July

A. squamosa L. Annonaceae Tree Fruit April–May August–November

C. annuum L. Solanaceae Herb Vegetable July–September August–October

C. pepo L. Cucurbitaceae Climber Vegetable July–September August–October

S. melongena L. Solanaceae Herb Vegetable July–September August–October

S. pinnata (L. f.) Kurz Anacardiaceae Tree Fruit March–April June–December

S. cumini (L.) Skeels. Myrtaceae Tree Fruit February–April May–June
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AM fungal structures, viz., aseptate intracellular hyphae, 
intercellular hyphae, vesicles, and arbuscules were observed in the 
roots of plants from home garden of two different sites (Fig. 1). 
DSE fungal colonization was characterized by melanized septate 
hyphae, microsclerotia and vesicles-like body were observed in 
the roots of plants from the home garden of two different sites 
(Fig. 2). The extent of AM and DSE fungal colonization in 
the studied plants is presented in Table 3. Dual (AM and DSE 
fungi) colonization was observed in seven plants. The roots of 
Amaranthus tricolor were attached with the spore-like structure 
of AM fungi and extraradical aseptate hyphae (Fig. 2h and i). 
However, arbuscule was absent in A. tricolor in both the sites. 
AM fungal colonization was maximum in Capsicum annuum and 
lowest in Ananas comosus. DSE fungal colonization was maximum 
in A. tricolor in both the sites and minimum was recorded in 
Solanum melongena. C. annuum showed the highest percentage of 
arbuscule and A. comosus showed the lowest number of arbuscule. 

Root length percentage of a vesicle was maximum in C. annuum 
and minimum in Spondias pinnata.

The significantly (p < 0.05) higher spore density was observed 
in Khowai than Amtali. Out of 18 morphotypes, 14 and 13 were 
isolated from Khowai and Amtali, respectively. There were four 
species from Acaulospora, one from Clarideoglomus, two from 
Funneliformis, one from Gigaspora, seven from Glomus, two 
from Rhizophagus, and one from Sclerocystis. Ten species of AM 
fungi were commonly found in both the sites (Table 4).

4. DISCUSSION
The study involves mycorrhizal colonization status in plants 
from home gardens. Dual colonization was reported earlier in 
other ecosystem from this region [33]. AM fungal colonization 
was higher than DSE fungal colonization which is in agreement 
with an earlier report [33]. The colonization between the sites 

Table 2: Soil physicochemical characteristics of soils of two home gardens of Tripura.

Site
Texture (%)

pH EC (cS cm−1) Organic 
carbon (%)

Available 
phosphorus 

(%)Sand Silt Clay

Khowai 73.64 12.15 14.19 5.14 ± 0.01 148.00 ± 1.15 0.99 ± 0.003 3.68 ± 0.05

Amtali 78.03 14.36 7.61 5.58 ± 0.01 128.67 ± 4.37 0.73 ± 0.002 1.36 ± 0.02

t value - - - 890.274 128.171 33.953 70.726

p < - - - 0.001 0.001 0.01 0.01

Figure 1: Arbuscular mycorrhizal fungal colonization of plants from the home garden. (a) hyphal 
appressorium entering the epidermal layer of A. comosus, (b) vesicles in the root segment of  

A. comosus, (c) cell-to-cell hyphal coiling in root of Annona squamosa, (d) arbusculate coils in the root 
of A. squamosa, (e) arbusculate coils in root portion of A. squamosa, (f) hyphal coil in root portion of  
S. melongena, (g) vesicles in the root portion of S. cumini, (h) arbusculate coils in the root segment of  

S. cumini, and (i) hyphal coils in the root cells of C. annuum (Scale bar: a, c, d, e, and g = 200 µm; b, f, 
h and i = 100 µm).
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of most of the plants exhibited no significant differences. This 
may be due to the same climate both the places share although 
there are significant differences between the soil properties. 
Amaranthus tricolor was found to be colonized by endophyte as 
there is no record of the presence of arbuscules in most members 
of Amaranthaceae which is in accord with the previous study [33]. 

The AM fungal colonization in roots of A. comosus was much 
higher than the earlier study [34]. Sarwade et al. [35] recorded 
a higher percentage of AM fungal colonization in C. annuum. 
The colonization of AM fungi in C. annuum falls within the 
range of Tanwar et al. [36]. AM fungal colonization in Cucurbita 
pepo was higher than recorded earlier [37]. AM and DSE fungal 
colonization in S. melongena was lower than the previous study 
[38]. This present study of AM fungal colonization percentage 
in S. melongena was within the range of earlier study [39]. AM 
fungal colonization in Syzygium cumini was higher than the study 
of Kumar et al. [40]. 

Despite the importance of AM fungi, knowledge of the diversity 
and ecology of these ubiquitous and important soil fungi is limited 
globally [41]. Total number of AM fungal spores isolated from the 
rhizosphere of home garden plants indicates that the spore density 
and species richness were maximum in Khowai than Amtali. The 
community of AM fungal species in the rhizosphere may vary 
with host species [42]. AM fungal species composition and spore 
density are highly variable and influenced by plant characteristics 
and a number of edaphic factors such as soil pH and soil moisture 
content [43]. It implies that AM fungal colonization may be 
affected by the broad interactions of several factors, such as the 
factors inherent to the host plant, climatic and edaphic factors, and 
effects of the soil community [44]. 

The probable reason for the prevalence of Glomus may be due 
to Glomus has different pH preferences [45] and Acaulospora 
are frequently isolated from acidic soils [46]. Gigaspora prevails 
in high sand content [47]. The dominance of Glomus was also 
reported from this region [23,25,33,48].

Figure 2: Endophytic fungal association in plants of the home garden. (a) Microsclerotia in the root of S. pinnata,  
(b) microsclerotia in the root segment of A. comosus, (c) intracellular septate hyphae in root of S. melongena, (d) root segment of  

C. pepo showing microsclerotia, (e) septate hyphae entering the root of C. pepo, (f) intercellular septate hyphae in the root of C. annuum, 
(g) microsclerotia in the root of A. tricolor, (h) spore-like (asterisk) and aseptate hyphae (arrow) attached to the root of A. tricolor, and  

(i) extraradical aseptate hyphae attached to the root of A. tricolor (Scale bar: b = 50 µm; a, e, f, and i = 100 µm; d and h= 150 µm; 
c and g = 200 µm).
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5. CONCLUSION
The study reveals the existence of a well-established relationship 
between plants and mycorrhizal fungi with regard to suitable 
colonization and robust composition of AM fungi. Further work 
should be directed to evaluate these essential native fungi on 
the growth of these plants. This study is also an effort to create 
awareness among the small scale farmers that the efficiency of these 
mycobiota which can be harnessed for long-term applications.
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