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Clostridium chauvoei, the causative agent of blackleg disease in cattle, presents significant economic and health
challenges due to its high mortality rates and rapid disease progression. This study focuses on the in silico genomic
characterization of C. chauvoei strain SBP 07/09 Swiss Bovine Pathogen, referring to a strain isolated in July
2009. The study identified and annotated pathogenic islands (PIs) contributing to the bacterium’s virulence and
adaptability. Using IslandViewer4, eight distinct PIs were identified, and 81 genes were detected using GeneMark.
hmm-P across these PIs. The genes are categorized as 60 functional genes, 20 hypothetical proteins, and one gene
with no assigned function. Functional annotation of genes using tools such as Basic Local Alignment Search Tool
(BLASTp), InterPro, and BlastK OALA revealed that these genes are implicated in essential processes, including stress
response, metabolism, genetic mobility, DNA repair, and anaerobic survival. Pathway analysis was performed using
Kyoto Encyclopedia of Genes and Genomes (KEGG) Mapper and BioCyc Pathway Tools, utilizing KO identifiers
assigned by BlastKOALA and whole genome data, respectively. This analysis revealed several key metabolic and
regulatory pathways associated with the detected genes. These include nutrient transport, energy production, cofactor
biosynthesis, and environmental adaptation. These pathways will likely contribute significantly to the organism’s
adaptability, anaerobic lifestyle, and survival within the host environment. Key findings include the identification of
genes facilitating nutrient uptake, energy production, and genomic integrity maintenance. All of which enhance C.
chauvoei s virulence and survival in hostile host environments. These insights offer valuable targets for developing
preventative and therapeutic strategies to combat blackleg disease, reducing its economic burden on cattle farming.

1. INTRODUCTION

germinate into vegetative cells, marking the transition to the growth
phase [1-4].

Clostridium chauvoei, a Gram-positive anaerobe, is the primary
pathogen responsible for blackleg disease in cattle, a condition marked
by acute myositis and high mortality. Blackleg primarily affects young
cattle and is characterized by the sudden onset of lameness, fever, and
rapid progression to fatality. The infection cycle of C. chauvoei in
ruminant hosts begins with the entry of spores into the host through
ingestion or contamination of wounds or mucosal abrasions. Ingested
spores reach the intestines, traverse the bloodstream or lymphatic
system, and migrate to muscle tissues. Alternatively, spores introduced
through wounds follow a similar path to muscle tissues. In healthy
tissues, the spores remain dormant until activation, which occurs
under anaerobic conditions, such as those created by muscle injury or
tissue damage that reduces oxygen levels. Once activated, the spores
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During vegetative growth, the bacteria proliferate rapidly in the
anaerobic environment, releasing toxins and enzymes. Key virulence
factors include beta pore-forming toxins (C. chauvoei cytotoxin
A and Chauveolysin) [5,6], which lyse host cells and cause tissue
necrosis. Clostridial exotoxins such as hyaluronidase, DNase, and
neuraminidase, degrade the extracellular matrix to facilitate bacterial
spread [7]. The toxin activity results in hemorrhagic necrosis of muscle
tissues, gas production from bacterial metabolism, and the formation
of characteristic dark, gas-filled lesions (blackleg), accompanied
by severe inflammation and edema. As the infection progresses,
toxins enter the bloodstream, causing toxemia and septicemia. This
systemic dissemination leads to fever, lameness, swelling, and rapid
deterioration of the host’s condition, often culminating in shock and
death if untreated [7]. While attempting to limit the infection through
macrophages and antibody production, the host immune response is
typically overwhelmed by the rapid bacterial proliferation and potent
toxin activity. In severe cases, the infection cycle ends with the host’s
death, completing the bacterium’s propagation in the environment
through post-mortem spore release from decomposing tissues [8]
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[Figure 1]. These spores in the environment and intestinal tracts of
cattle can remain dormant until activated by anaerobic conditions,
leading to tissue colonization and subsequent disease [5,8].

The pathogenicity of C. chauvoei stems from its ability to adapt to
diverse environments within the host. This adaptability is primarily
facilitated by genetic elements known as pathogenic islands (PIs),
which harbor clusters of genes that enhance the bacterium’s ability to
evade the host immune system, utilize available nutrients, and survive
under anaerobic conditions. Understanding the genes within these Pls
is crucial for elucidating the mechanisms underlying C. chauvoeis
virulence, which can inform effective disease management and
prevention strategies [7,9] [Figure 1]. The objective of the present study
is to employ a multi-tiered bioinformatic approach: (1) To identify Pls
within the genome and to predict the genes and their functions within
these Pls, and (2) to, consequently, perform the metabolic pathway
analysis for the PIs and whole genome data of C. chauvoei. This
integrative approach allows for identifying the genes that play a key
role in processes and pathogenicity.

2. MATERIALS AND METHODS

2.1. Genome Data Sampling

The genome sampling considers the genome’s completeness, strain
history, and pathogenicity report. The whole genome sequence of
C. chauvoei SBP 07/09, with the following accession number NZ
CP027286, is obtained from NCBI [10]. This whole genome sequence
is used to predict the Pls.

2.2. Screening of PIs by in silico Genome Analysis

The modified protocol of Nammi ef a/. [11] is used to identify the Pls
in C. chauvoei SBP 07/09. Pls are screened and identified using the
tool Islandviewer4 [12]. IslandViewer4 integrates three methods for

e) qu:mF

predicting genomic islands: sequence-based, comparative-based, and
codon-based methods. The sequence-based method focuses on sequence
composition, particularly dinucleotide bias, and detects the presence of
mobility genes such as integrases and transposases to locate genomic
islands. IslandPath-DIMOB [13] is an example of the sequence-based
method. The comparative-based method uses comparative genomics
to identify genomic islands by detecting regions present in the target
genome but absent in closely related genomes, suggesting horizontal
gene transfer. IslandPick [14] is an example of the comparative-based
method. Finally, the codon-based method identifies genomic islands
by analyzing codon usage bias, as these regions often exhibit codon
patterns distinct from the rest of the genome. SIGI-Hidden Markov
Model (HMM) [15] is an example of a codon-based method. HMMs
pinpoint areas with atypical codon usage. The whole genome sequence
of this strain was downloaded from NCBI and submitted in FASTA
format as input to Islandviewer4 for predicting Pls. Islandviewer4 is
freely available at https://www.pathogenomics.sfu.ca/islandviewer.
These PIs are further used to predict the genes.

2.3. Prediction of Genes in PIs

GeneMark.hmm is a tool that uses HMM to predict genes in genomic
sequences [16]. GeneMark.hmm family is widely used to identify
protein-coding genes within DNA sequences. The prokaryotic version
GeneMark.hmm-P identifies start and stop codons, ribosomal binding
sites, and predicts operons in bacteria and archaea [17]. The tool
provides gene prediction results in output formats, which include
gene coordinates, coding sequences (CDS), and protein translations.
The nucleotide sequences of each PI are downloaded from NCBI and
are submitted in the FASTA format as an input to GeneMark.hmm-P
for gene prediction. GeneMark.hmm-P is freely available at https://
genemark.bme.gatech.edu/gmhmmp.cgi. These translated protein
sequences are used to predict the function of the genes.
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Figure 1: The lifecycle of Clostridium chauvoei in ruminants (cattle), causing blackleg disease.
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2.4. Prediction of Gene Function Using Different Tools

The function of the genes was predicted using three different
methods: (a) Homology-based method, (b) domain-based method, and
(c) metabolic category-based method.

2.4.1. Homology-based method

The homology-based method predicts the function of a gene or protein
based on its homology (similarity) to other known sequences. The
underlying assumption is that if two sequences share a significant
level of similarity, they may have evolved from a common ancestor
and are likely to retain similar functions. The query sequence (gene/
protein of unknown function) is compared against a database of
sequences with known functions using a tool based on a homology-
based method. BLAST, is an essential tool for identifying sequences
similar to a query sequence, which can provide insights into the
sequence’s function, structure, and evolutionary relationships. BLAST
for proteins (BLASTp) predicts the protein’s function by identifying
similarities between a query protein sequence and known protein
sequences in a database [18]. This method relies on the principle that
proteins with similar sequences often share similar functions, as they
tend to have conserved structural or functional domains. The translated
protein sequences of the genes are used to predict the function of the
genes. The amino acid sequences of each gene are submitted in the
FASTA format as input to BLASTp to predict gene function. The
sequence similarity and E-value are considered to interpret the results
and predict the gene’s function. BLASTp is freely available at https://
blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins.

2.4.2. Domain-based method

The domain-based method predicts the function of a gene or a
protein by identifying specific protein domains. Protein domains
are conserved structural or functional units within proteins, often
responsible for particular biochemical activities or interactions. Since
these domains are evolutionarily conserved across different proteins,
they can provide reliable clues about a protein’s function even
when the overall sequence similarity is low. InterPro is a tool built
on a domain-based method to predict protein functions and provide
annotations by combining information from several protein signature
databases [19]. The translated protein sequences of each gene are
submitted in the FASTA format as input to InterPro. The tool then
scans these sequences against its databases and generates a report
detailing identified protein families, domains, functional sites, and
related GO terms. The generated report is used to interpret the results
and predict the gene’s function. The tool InterPro is freely available at
https://www.ebi.ac.uk/interpro/.

2.4.3. Metabolic category-based method

The metabolic category-based method predicts a gene’s function
by identifying a protein’s metabolic category. BLAST KEGG
Orthology And Links Annotation (BlastKOALA) is a tool built on a
metabolic category-based method that integrates homology-based and
pathway-based function prediction within the context of metabolic
and cellular processes. The tool BlastKOALA is part of the KEGG.
BlastKOALA is an automatic annotation server for genome sequences,
which performs KO (KEGG Orthology) assignments to characterize
individual gene functions. BlastKOALA also reconstructs KEGG
pathways, Biomolecular Relations in Information Transmission and
Expression (BRITE) hierarchies, and KEGG modules to infer high-
level functions of the organism or the ecosystem. In BlastKOALA, the
KO assignment is performed by a modified version of the internally
used KOALA algorithm. Initially, the BLAST search is against a non-
redundant dataset of pangenome sequences at the species, genus, or

family level, which are generated from the KEGG GENES database
by retaining the KO content of each taxonomic category [20]. The
translated protein sequences of each gene are submitted in the FASTA
format to BlastKOALA. The output of these results includes gene
function and KEGG Orthology identifiers (KO ID), which were further
interpreted. The tool BlastKOALA is freely available at https:// www.
kegg.jp/blastkoala/. The result files were downloaded and further used
for KEGG Mapper analysis.

2.5. Metabolic Pathway Analysis for Identification of
Genes and Pathways Involved in the Pathogenesis of C. chauvoei
SBP 07/09

The metabolic pathways for C. chauvoei SBP 07/09 were analyzed
to identify genes and pathways involved in pathogenesis. Two
complementary approaches were used: Mapping pathways using
KEGG mapper and constructing a pathway/genome database (PGDB)
using BioCyc pathway tools. The analysis focused on genes located
in PIs to explore their potential roles in metabolism and pathogenesis.

2.5.1. Mapping of metabolic pathways using KEGG mapper
based on KO IDs

The genes identified during functional annotation through
BlastKOALA, which predicts the KO IDs, were analyzed for their roles
in metabolic pathways using KEGG Mapper. The tool KEGG Mapper
is freely available at https://www.genome.jp/kegg/tool/map_pathway.
html. KEGG Mapper [21,22] provided a pathway mapping of these
annotated genes by integrating them into existing metabolic pathways
within the KEGG framework. This tool highlighted pathways linked to
metabolic processes and pathogenesis based on the input data.

2.5.2. Building of metabolic pathways using BioCyc pathway
tools based on whole genome sequence data

KEGG Mapper assigned annotated genes to metabolic pathways based
on KO identifiers, but its scope was limited to proteins represented in the
KEGG database. To address this limitation, BioCyc pathway tools [23]
were employed to reconstruct genome-wide pathways, including both
characterized and uncharacterized proteins. A comprehensive metabolic
map was generated by importing the annotated genome, offering a
broader view of C. chauvoei’s metabolic network. Pathway Tools
covered KO-mapped proteins and inferred pathways for genes absent
in KEGG, enabling deeper insight into metabolic potential. In addition,
it supported pathway enrichment and experimental data integration,
enhancing the resolution of genome-wide metabolic analysis.

2.5.3. Correlation of pathways identified between KEGG mapper
and BioCyc pathway tools

A comparative manual correlation of results from both platforms
enabled deeper insights into the genome’s metabolic potential via
KEGG Mapper and BioCyc Pathway Tools. By comparing the outputs,
overlapping and unique pathways were identified. BioCyc has filled
the gaps left by KEGG, while KEGG’s standardized pathways helped
validate BioCyc’s results. This complementary approach leveraged the
strengths of both tools: KEGG’s precision in curated pathways and
BioCyc’s breadth in genome-wide reconstruction, yielding a more
complete understanding of C. chauvoei’s metabolic network.

3. RESULTS

3.1. PIs in C. chauvoei strain SBP 07/09

The Pls of C. chauvoei strain SBP 07/09 were predicted using the
IslandViewer4 tool. The different prediction tools of IslandViewer4
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applied to predict PIs are IslandPath-DIMOB and SIGI-HMM.
The IslandPath-DIMOB identified seven Pls, whereas SIGI-HMM
detected one. The results of Pls are further refined by checking for
any overlaps in island start and end positions to observe distinct Pls
[Table 1]. The study identified eight distinct Pls in C. chauvoei strain
SBP 07/09. The nomenclature for the PI is generated; for example, the
first PI in the organism is C. chauvoei PI 1 labelled CCPI1 [Table 1].

3.2. Genes and their Functions

Gene prediction for the eight Pls of C. chauvoei strain SBP 07/09
using GeneMark.hmm.p identified 81 genes [Supplementary Table 1].
Functional annotation was performed using three complementary tools:
BLASTp (homology-based), InterPro (domain-based), and BlastKOALA
(metabolic category-based) [Supplementary Table 2]. Based on the
combined results, genes were classified into three categories: (a) Genes
with predicted functions, (b) hypothetical proteins, and (c) genes with
no functional assignment. Genes with known homologues or functional
annotations were assigned to the first category. Genes predicted with
open reading frames but lacking homology were labeled hypothetical
proteins. Genes that matched neither known functions nor hypothetical
annotations were categorized as having no function, typically due to the
absence of database matches. This classification yielded 60 functional
genes, 20 hypothetical proteins, and one gene with no function
[Figure 2 and Supplementary Table 3]. Each gene was assigned a unique
identifier based on its position, for example, the first gene in a PI was
labeled CCPI-G1 [Supplementary Table 1]. In addition, this organism’s
unique genes are summarized along with their roles in Table 2. The
annotations present a key limitation: If genes such as hypothetical
proteins and genes with no function reside within genomic islands, their
unknown function prevents definitive inference of their role.

3.3. Metabolic Pathway Analysis for Identification of Genes
and Pathways Involved in the Pathogenesis of C. chauvoei SBP
07/09

The metabolic pathway analysis of C. chauvoei SBP 07/09 was
conducted using KEGG Mapper and Pathway Tools to identify genes
and pathways associated with the organism’s pathogenesis.

3.3.1. KEGG mapper analysis

The metabolic pathways of C. chauvoei SBP 07/09 were mapped
using KEGG mapper based on KO IDs, which were assigned through
functional annotation using the BLASTKOALA method. A total of
22 proteins were identified to be involved in 40 metabolic pathways
within the KEGG database [Supplementary Table 4]. Further, after
carefully evaluating the pathways, seven were assumed to be involved
and play an essential role in the organism’s pathogenicity.

Table 1: The number of pathogenic islands in Clostridium chauvoei strain
SBP 07/09.

S. No. Island No. Island start Island end Length
1 CCPIl 537993 545177 7184
2 CCPI2 725827 738326 12499
3 CCPI3 1322471 1328899 6428
4 CCPI4 1811552 1819055 7503
5 CCPI5 2258243 2268835 10592
6 CCPI6 2610857 2631723 20866
7 CCPI7 2786754 2790862 4108
8 CCPI8 2830535 2845432 14897

3.3.2. BioCyc pathway tools analysis

The pathway analysis of C. chauvoei SBP 07/09 was conducted
using BioCyc pathway tools, utilizing the whole genome sequence
obtained from NCBI to reconstruct a metabolic PGDB. The resulting
database provided a comprehensive overview of metabolic pathways,
enzymatic reactions, transporter reactions, polypeptides, protein
complexes, enzymes, transporters, compounds, transcription units,
and tRNAs [Table 3, Figure 3 and Supplementary Figure 1]. To
evaluate the accuracy and biological relevance of these predictions,
the reconstructed pathways were further classified into six categories:
Consistent, partially consistent, poor topological match, missing, not
reported, and false positives [Table 4 and Supplementary Table 5]. In
C. chauvoei, 155 out of 210 pathways were consistent, and 22 were
missing [Table 4 and Supplementary Table 5]. Among these pathways,

Table 2: The summary of unique genes in the Clostridium chauvoei strain

SBP 07/09.

S.no  Gene. no
1 CCPI-G2
2 CCPI-G3
3 CCPI-G5
4 CCPI-G6
5 CCPI-G7
6 CCPI-G9
7 CCPI-G31
8 CCPI-G52
9 CCPI-G53

10 CCPI-G54

11 CCPI-G55

12 CCPI-G58

13 CCPI-G59

14 CCPI-G60

15 CCPI-G61

16 CCPI-G77

Gene name

Rpn family
recombination-promoting
nuclease/putative transposase
Rpn family
recombination-promoting
nuclease/putative transposase
Rpn family
recombination-promoting
nuclease/putative transposase
Rpn family
recombination-promoting
nuclease/putative transposase
Rpn family
recombination-promoting
nuclease/putative transposase
Rpn family
recombination-promoting
nuclease/putative transposase
ArpU family phage
packaging/lysis regulator

PTS lactose/cellobiose
transporter subunit ITA

Lichenan-specific PTS
enzyme IIB component

PEP phosphonomutase

PTS sugar transporter subunit
1c

Class B sortase

Alpha-L-fucosidase

Glycoside hydrolase family
16 protein

PTS sugar transporter subunit
IIC (again)

YjjG family noncanonical
pyrimidine nucleotidase

Role

Recombination or
phage defense

Recombination or
phage defense

Recombination or
phage defense

Recombination or
phage defense

Recombination or
phage defense

Recombination or
phage defense

Regulation of phage
lysis and packaging
genes
PTS-mediated
sugar uptake

Transports
B-glucans

Phosphonate
metabolism

Sugar transport via
PTS system

Surface protein
anchoring

Degradation of
fucose-containing
glycans

Environmental
carbohydrate
metabolism

Sugar transport via
PTS system

Pyrimidine salvage
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Figure 2: The figure shows the graphical representation of summary of gene category classification. (a) Gene categorized into B genes with functions, M genes with
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Table 3: The overview of reconstruction of metabolic pathways based on
the whole genome of Clostridium chauvoei strain SBP 07/09.

S. no Description Number
1 Pathways 169
2 Enzymatic reactions 1052
3 Transport reactions 92
4 Polypeptides 2556
5 Protein complexes 118
6 Enzymes 558
7 Transporters 99
8 Compounds 798
9 Transcription Units 1754
10 tRNAs 87

Table 4: The different categories of metabolic pathways built using
pathologic Clostridium chauvoei strain SBP 07/09.

S. No. Category of pathways Number of pathways
1 Consistent 155
2 False positives 8
3 Not reported 9
4 Partially consistent 12
5 Poor topological match 4
6 Missing 22
Total 210

unique pathways and their roles that were not reported or studied are
summarized in Table 5. The genes from PIs present within BioCyc
pathways and that are assumed to be involved and play an essential role
in the organism’s pathogenicity are shown in Supplementary Table 6.

Table 5: The summary of unique metabolic pathways in Clostridium
chauvoei SBP 07/09.

S. no
1

Pathways

Arsenate detoxification I

Cytidylyl MoCo sulfurylation

Dipyrromethane cofactor
biosynthesis

Ethanol degradation I

Folate transformations I1T
(Escherichia coli)

Pyridoxal 5’-phosphate
salvage [

Queuosine biosynthesis I11
(queuosine salvage)

Tetrahydrofolate salvage from
5,10-methenyltetrahydrofolate

Thiamine diphosphate
salvage II1

Role

The pathway reduces arsenate
to arsenite (detoxification)

The pathway is essential for
sulfuration of MoCo, which
is involved in crucial redox
reactions in the global C-, N-,
and S-cycles

Cofactor for the formation of
preuroporphyrinogen

The pathway oxidizes ethanol
to acetaldehyde/acetate

The pathway transforms
folate into methyl and formyl
derivatives.

The pathway salvages
Pyridoxal 5’-phosphate (PLP)
from pyridoxal, pyroxidine, and
pyridoxamine.

The pathway is involved in

the denovo biosynthesis of
queuosine, and queuosine is a
modified nucleoside in specific
tRNAs in bacteria.

The pathway salvages
tetrahydrofolate from
5,10-methenyltetrahydrofolate

The pathway recycles thiamine
when it’s depleted and is
essential for the bacteria’s
survival.

MoCo: Molybdenum cofactor.
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Figure 3: The figure shows the metabolic map or overview of classified pathways of pathway genome database of Clostridium chauvoei SBP 07/09 generated in

pathway tools.

3.3.3. Correlation of KEGG mapper and BioCyc pathway tools

The results obtained from both tools, KEGG Mapper and BioCyc
pathway tools, were compared and correlated to assess the involvement
of metabolic pathways in virulence and survival [Table 6]. A total of
36 proteins encoded within the PIs were mapped to 49 metabolic
pathways across both KEGG mapper and BioCyc pathway tools
analyses, highlighting their potential roles in the bacterium’s
pathogenic mechanisms. A comprehensive metabolic pathway analysis
using KEGG Mapper and BioCyc pathway tools revealed a high

similarity, demonstrating consistency in core metabolic predictions
and highlighting unique pathways identified by each tool.

BioCyc pathway tools detected pathways such as L-threonine
degradation I, S-propane-1,2-diol degradation, cardiolipin
biosynthesis I, and inosine-5’-phosphate biosynthesis II, which
were absent in KEGG mapper, likely due to its reliance on KO IDs.
Conversely, the KEGG Mapper mapped pathways such as taurine
and hypotaurine, pyruvate, and propanoate metabolism, which were



218

Table 6: The manual correlation of pathways identified by KEGG mapper and BioCyc pathway tools.
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S.no Gene no. Gene name Gene synonym KEGG pathways Pathway tools
1 CCPI-G11  K15024; putative phosphotransacetylase Phosphate propanoyltransferase Pyruvate metabolism; L-threonine degradation
[EC: 2.3.1.8] Propanoate I, S-propane-1,2-diol
metabolism degradation
2 CCPI-G44  gpml; 2,3-bisphosphoglycerate-independent ~ Putative=2,3-bisphosphoglycerate- Glycolysis/ Gluconeogenesis I,
phosphoglycerate mutase [EC: 5.4.2.12] independent phosphoglycerate mutase  Gluconeogenesis glycolysis 1V, glycolysis
I (from glucose
6-phosphate)
3 CCPI-G45  TPI, tpiA; triosephosphate isomerase Putative Triosephosphate isomerase Glycolysis/ Glycolysis I (from
(TIM) [EC: 5.3.1.1] Gluconeogenesis glucose 6-phosphate),
gluconeogenesis I,
glycolysis IV
4 CCPI-G46  PGK, pgk; phosphoglycerate kinase Phosphoglycerate kinase Glycolysis/ Glycolysis I (from
[EC:2.7.2.3] Gluconeogenesis glucose 6-phosphate),
gluconeogenesis I,
glycolysis IV
5 CCPI-G47 GAPDH, gapA,; glyceraldehyde Type I glyceraldehyde-3-phosphate Glycolysis/ Glycolysis I (from
3-phosphate dehydrogenase dehydrogenase Gluconeogenesis glucose 6-phosphate),
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not explicitly detected in BioCyc Pathway Tools. BioCyc Pathway
Tools primarily captured variations of core metabolic pathways,
including glycolysis (e.g., glycolysis IV, glycolysis I from glucose-
6-phosphate) and gluconeogenesis (e.g., gluconeogenesis I).
At the same time, KEGG Mapper identified broader functional
pathways such as microbial metabolism in diverse environments
and biosynthesis of secondary metabolites. In addition, KEGG
Mapper mapped several pathways linked to pathogenicity and stress

response, including Salmonella infection, pathogenic Escherichia
coli infection, biofilm formation in Vibrio cholerae, flagellar
assembly, and two-component regulatory systems, suggesting a
potential link between metabolism and virulence. Overall, KEGG
Mapper provided a broad metabolic overview, whereas BioCyc
Pathway Tools enabled a more detailed reconstruction of organism-
specific variations, underscoring the complementary nature of both
tools [Supplementary Table 4].
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4. DISCUSSION

This study aimed to enhance the understanding of C. chauvoei by
identifying its PIs and predicting genes potentially linked to virulence
and survival. Functional annotation of these genes was performed
using homology-based, domain-based, and metabolic category-based
approaches to ensure a comprehensive classification. To further
investigate the metabolic potential of C. chauvoei, a genome-scale
metabolic pathway reconstruction was carried out, and KO IDs derived
from metabolic category-based function prediction were mapped onto
metabolic pathways. A comparative analysis was then conducted by
manually correlating pathways obtained from KEGG and BioCyc
Pathway Tools. This allowed for an in-depth evaluation of pathway
organization, enzyme annotations, and metabolic variations. This
comparison provided insights into key metabolic processes that may
contribute to the organism’s adaptation and pathogenicity. Finally, the
reconstructed pathways were examined in the context of C. chauvoei's
lifecycle, linking its metabolic capabilities to survival strategies and
infection mechanisms. The steps based on the standard tools provided
us with the expected results. At the same time, the combinatorial
use of these tools in this study linked the genomic islands of the
genomes to metabolic pathways. The present section comprehends the
understanding of the current study, provides insights, and discusses
how the proteins encoded by the PIs help C. chauvoei’s adapt to the
situation during pathogenicity.

The genes encoded by these Pls are the genomic data generated in
this method, which is helpful for disease management. Disease
management is an essential aspect for understanding and controlling
a disease. The first step in understanding a disease is to identify the
organism causing the disease. However, the bacterial pathogen rapidly
evolves and generates highly variable genotypes or isolates. Therefore,
identifying the isolate among the group of isolates mainly associated

with the disease is essential. Thus, the genomic data can be used as
molecular markers that allow us to discriminate different strains within
a species and can be applied to disease management.

The proteins encoded by the PIs enhance C. chauvoei s ability to survive
and adapt to diverse environments. They also manage stress responses,
effectively sustain metabolic processes, manage energy production,
respond to environmental cues, maintain genomic integrity, and acquire
beneficial genetic traits. The bacterium’s flexible genetic toolkit, robust
energy production, and membrane stabilization systems collectively
allow it to persist and evade host defenses. If conditions within the host
become unfavorable, some bacterial cells initiate sporulation, forming
resilient spores. These spores can withstand environmental stress,
ensuring the bacterium’s survival and potential for future transmission.

4.1. Genes Coding for Stress Sensor Proteins Responding to
Environmental Cues

C. chauvoei spores enter a ruminant host, often through ingestion
or wound contamination; they encounter a nutrient-rich but hostile
environment that initiates spore germination into active bacterial cells.
The active bacterial cells are known for having proteins that detect stress
due to the acidic and low-oxygen conditions in host tissues. Gram-
negative bacteria harbor a highly conserved stress response system
known as the envelope stress response (Esr) system, formerly known as
phage shock protein (Psp) response system [24] [Figure 4]. The response
system senses the signal from the environment and transduces it to the
cytoplasm [25]. The Psp systems of E. coli have six proteins, PspA, B,
C, D, F, and G. In general, stress mislocalizes protein secretin from the
cell envelope due to its dissociation from the chaperone-like pilot protein
and also reduces proton motive force. These events help proteins PspB
and PspC (CCPI-G10) sense the signals in the extracytoplasmic space
and help them bind to PspA, thereby releasing PspF from PspA. The
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protein PspF activates the promoters of pspG and pspA and subsequently
turns on the pspABCDE operon [26]. A rapid sensing of environmental
changes marks this transition, and this detection acts as an alert. This
initiates a bacterial response to activate RNA polymerase and a number of
transcriptional regulators that trigger defense mechanisms, coordinating
numerous proteins across several functions. The environment’s hostility
becomes apparent, and transcriptional regulators play a critical role in
adjusting gene expression to maximize bacterial survival.

4.2. Genes Coding for Transcriptional Regulators to Sustain
Metabolic Process

The sigma factor of RNA polymerase (CCPI-G49) is a transcription
initiation factor that enables specific binding of RNA polymerase
(RNAP) to gene promoters needed to initiate transcription in
bacteria. The specific sigma factor used to activate transcription of a
given gene will vary, depending on the gene and the environmental
signals. RNAP factor sigma-54 is needed to initiate transcription in
bacteria in a nitrogen-limited environment [27,28]. The protein PspF
also activates the o©54-dependent transcription of the pspABCDE
operon [26]. The sigma-54 transcriptional regulator and its
interacting counterpart, the Sigma-54-interacting transcriptional
regulator (CCPI-G51), add specificity to this response. This helps
to focus on genes that help the bacterium function optimally in low-
oxygen conditions [Figure 4] [29]. The sigma-54 transcriptional
regulator is known for flagellar biosynthesis, motility [30-34],
amino acid metabolism [35-37], quorum sensing, biofilm formation,
virulence [38-40], and bacterial natural product genes [41].

The helix-turn-helix transcriptional regulator (CCPI-G40, G41) and
multiple antibiotic resistance regulator (MarR) family regulators
(CCPI-G75), belonging to the family winged helix-turn-helix, activate
genes necessary for pathogenicity and stress response [Figure 4]. This
helps the bacterium to adapt its metabolism and defense mechanisms
to the nutrient-limited, anaerobic conditions within the host. The MarR
protein is essential for diverse biological functions, which are crucial
to the survival of pathogenic bacteria. The functions include resistance
to multiple antibiotics, regulation of virulence-associated traits,
virulence genes, hemolytic activity, extracellular protease activity,
and motility [42-44]. The signaling molecules or ligands that activate
the transcriptional regulator MarR are small phenolic compounds,
metal ions, small peptides, and oxidative stress [45]. The repressor,
open reading frame, kinase (ROK) family transcriptional regulators
(CCPI-G56) are characterized by carbohydrate-sensing domains
shared with sugar kinases, and the ROK family transcriptional
regulator modulates pathways involved in carbohydrate metabolism,
fine-tuning energy production to the available substrates in host tissues
[Figure 4].

Bacteria extensively use autolysins to remodel, recycle, and even
destroy their cell walls. The autolysin regulatory protein (ArpU)
family transcriptional regulator (CCPI-G31) is linked to the regulation
of muramidase-2 (peptidoglycan hydrolase-2 or autolysin) [Figure 4].
Bacteria would use ArpU to remodel the cell wall affected by
stress. Autolysins may also degrade peptidoglycan to avoid their
own recognition by the host’s innate immune system. Collectively,
these transcriptional regulators control a network of genes that help
C. chauvoei respond to host conditions and establish infection. During
this process, the equilibrium between the synthesis and degradation of
mRNA in the pathogen is needed. The processing and degradation of
mRNAs are initiated by RNase Y (CCPI-G24), an endoribonuclease
anchored to the cell membrane [Figure 4 and Supplementary Figure 2].

Exoribonucleases degrade the cleaved products. In many bacteria,
these RNases, RNA helicases, and other proteins are organized in
a protein complex called the RNA degradosome, which plays an
essential role in virulence and pathogenicity [46,47].

4.3. Genes for Managing Energy Production

The study identified transcription regulators that activate enzymes,
transporters, and energy-related genes that manage energy production.
The enzymes such as alpha-L-fucosidase (CCPI-G59) and glycoside
hydrolase family 16 protein (CCPI-G60) break down polysaccharides
[Figure 5]. Gut microbes produce fucosidases [48-51], cleaving fucose
from host glycans (free oligosaccharides and glycoconjugates) to
maintain intestinal homeostasis [52,53]. This outcome also ensures
additional carbon sources to microbes for energy production, even
under oxygen-limited conditions in anaerobic respiration. Transporters
are crucial for nutrient uptake, which sustains the bacterium during
infection. The major facilitator superfamily (MFS) transporter
(CCPI-G76) facilitates the uptake of sugars and possibly other
metabolites from the host [Figures 4 and 6, Supplementary Figure 3].
FucP and its homologues belonging to the MFS family transported
L-fucose across cell membranes in a pH-dependent manner [54-56].

In general, pathogens form communities of microorganisms known
as biofilms, and biofilms are protected by extracellular polymeric
substance (EPS) made of polysaccharides, proteins, lipids, and
extracellular DNA [57]. The mature biofilms undergo dispersal, which
can be divided into two types: Active and passive dispersal, where
active dispersal plays a vital role in the life cycle of a biofilm that
contributes to bacterial survival and disease progression. Passive
dispersal refers to dispersal by external forces. Active dispersal
refers to dispersal triggered by microbes in the biofilm in response
to environmental changes such as nutrient starvation, phagocyte
challenge, and unfavorable oxygen levels [58]. The enzyme glycoside
hydrolase family 16 protein produced by the bacterium may degrade
the polysaccharide, poly(1,6)- N-acetyl-d-glucosamine (PNAG), by
hydrolyzing B(1,6) glycosidic linkages, forming N-acetylglucosamine
(GleNAc) [59]. GIcNAc then enters the cell and is deacetylated into
acetate and GIcN-6-P by GlcNAc-6-phosphate deacetylase, which
belongs to the amidohydrolase superfamily (CCPI-G62) [60,61]. Then,
GIcN-6-P is used in two main pathways: PG recycling pathway and
the glycolysis pathway. Thus, the two enzymes glycoside hydrolase
family 16 protein and GlcNAc-6-phosphate deacetylase play a role in
bacterial survival and disease progression.

Transporters are crucial for nutrient uptake, which sustains the
bacterium during infection. The MFS transporter works alongside the
phosphotransferase system (PTS) transporters, facilitating the uptake
of sugars and possibly other metabolites from the host [Supplementary
Figure 4]. The various PTS transporters include PTS lactose/cellobiose
transporter subunit IIA (CCPI-G52), and PTS sugar transporter
subunit IIC (CCPI-G55) [Figure 5 and Supplementary Figure 4]. In
addition, the putative Lichenan-specific phosphotransferase enzyme
IIB component (CCPI-G53) is also identified in the study. Histidine-
phosphorylatable phosphocarrier protein (HPr) family phosphocarrier
protein (CCPI-G26) acts as a regulator and is essential in the PTS,
which transfers sugar molecules across the cell membrane for energy.
HPr is present in the cell in the phosphorylated (HPr-P) or non-
phosphorylated (HPr) form, depending on the presence or absence of a
sugar substrate of the PTS [62,63]. Such sugars, when present, give rise
to the dephospho form of the protein due to sugar phosphorylation, but
when exogenous PTS sugars are absent, HPr-P should predominate.
The concentration of the phosphorylated form of HPr decreases in the
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presence of a PTS substrate [64,65]. Sugar ABC transporter permease
(CCPI-G67) proteins enhance this by efficiently channeling nutrients
across the bacterial membrane [Figure 5]. Together, these transporters
maximize nutrient intake, helping C. chauvoei thrive in the host’s
nutrient-rich but competitive environment.

The energy production of C. chauvoei depends on an array of proteins
that work collectively to ensure efficient glucose utilization and other
anaerobic metabolic pathways. The genes related to the fucose pathway,
1,2-propanediol to propionate pathway, and DHAP to lactate pathway
are identified in the study. The fucose pathway starts with fucose
and ends with DHAP and L-acetaldehyde [Figure 6]. L-acetaldehyde
enters the 1,2-propanediol to propionate pathway, whereas DHAP
enters the glycolysis pathway. In the propanediol pathway, the enzyme
phosphate propanoyl transferase (CCPI-G11) is identified in the
study, and this enzyme catalyzes the reaction of propanoyl-CoA to
propanoyl [Figures 6 and 7, Supplementary Figures 5-7]. The study
identifies enzymes such as triosephosphate isomerase (CCPI-G45),
type 1 glyceraldehyde-3-phosphate dehydrogenase (CCPI-G47),
phosphoglycerate kinase (CCPI-G46), and 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase (CCPI-G44) in the glycolysis
pathway. These enzymes catalyze the reactions from DHAP to lactate
[Figure 6 and Supplementary Figures 8-12]. In addition, enzyme PEP
phosphonomutase (CCPI-G54) catalyzes the conversion of PEP to
phosphonopyruvate, and the enzyme phosphonopyruvate hydrolase
catalyzes the conversion from phosphonopyruvate to pyruvate
[Figure 6]. In contrast, the lactate utilization protein (CCPI-G80)
enables C. chauvoei to metabolize lactate, a common byproduct in
anaerobic environments within host tissue [Figure 7 and Supplementary
Figure 13]. Anaerobic sulfite reductase subunits AsrA (CCPI-G69) and
AsrB (CCPI-G70), alongside sulfite reductase subunit C (CCPI-G71),
ensure energy production even under oxygen-limited conditions by
reducing sulfite to a form usable as hydrogen sulfide in anaerobic
respiration [66].

4.4. Genes for Acquiring Beneficial Genetic Traits and
Maintaining Genomic Integrity

DNA replication and repair systems are critical as the infection
progresses to ensure accurate replication and to counteract DNA
damage from host immune defenses. Proteins such as replicative DNA
helicase (CCPI-G35) facilitate DNA replication, ensuring continuous
bacterial cell division and colony expansion. The recombinase
RecA (CCPI-G23) plays an important role in DNA repair through
homologous recombination, protecting the bacterium from genotoxic
stress imposed by the host immune system [Supplementary Figure 14].
Exonuclease SbcCD subunit D (CCPI-G14) and AAA family ATPase
(CCPI-G15) assist in repairing double-strand breaks in DNA and
removing damaged nucleotides, respectively, maintaining genome
integrity. Meanwhile, the YjjG family nucleotidase (CCPI-G77) helps
to remove and recycle damaged or noncanonical pyrimidine bases,
preserving DNA and RNA fidelity.

The genetic adaptability of C. chauvoei is based on proteins that
promote genome plasticity. The IS256 family transposase (CCPI-G12,
G64) and the Rpn family recombination-promoting nuclease
(CCPI-G2, G3, G5-7, G9) and tyrosine-type recombinase/integrase
(CCPI-G29) enable horizontal gene transfer by allowing DNA
segments to integrate into the genome. This capability may enhance
virulence or antibiotic resistance, aiding survival under immune
pressures. The DDE domain protein (CCPI-G50, G57, G72), DDE-
type integrase (CCPI-G66, G68), and other recombinases further

promote genetic diversity, allowing the bacterium to adapt to varying
conditions within the host and potentially evade immune responses.

During the above reactions or in the TCA cycle, electron transport,
DNA repair; flavin adenine dinucleotide (FAD) exists in four redox
states flavin-N(5)-oxide, hydroquinone, quinone, and semiquinone;
and is converted between these states by accepting or donating
electrons [67]. FAD (Quinone or oxidized form) accepts two electrons
and two protons to become FADH, (hydroquinone form). The oxidation
of FADH, or reduction of FAD by donating or accepting one electron
and one proton, respectively, to form semiquinone (FADH") [68].

4.5. Genes for Managing Stress Responses

The cell structure and membrane integrity of C. chauvoei rely on
membrane-stabilizing proteins, which are vital as the bacterium
proliferates. The genes coding for CDP-diacylglycerol-glycerol-3-
phosphate 3-phosphatidyl transferase, Class B sortase, DegV family
proteins, stage V sporulation protein S, pseudouridine synthase, and
the 23S rRNA pseudouridine methyltransferase RImH are known for
managing stress responses. CDP-diacylglycerol-glycerol-3-phosphate
3-phosphatidyl transferase (CCPI-G21) is involved in phospholipid
biosynthesis, such as phosphatidylglycerol, the most abundant acidic
phospholipid, which is essential in the outer membrane. The acidic
phospholipids strengthen the cell membrane, providing more stability to
bacterial cell walls. The mutants were able to grow at normal temperatures
but showed slow growth at higher temperatures (>40°C) [69]. Thus,
CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyl transferase is
important in stabilizing the bacterial cell walls.

Class B sortase (CCPI-G58) aids by anchoring surface proteins to the
bacterial cell wall, which may enhance adhesion to host tissues and
provide a structural advantage. DegV family proteins (CCPI-G43) and
stage V sporulation protein S (CCPI-G25) are involved in structural
maintenance and sporulation, with the latter ensuring that some cells
can form spores for persistence or future transmission.

Pseudouridine is a ubiquitous constituent of structural RNA (transfer,
ribosomal, small nuclear (snRNA), and small nucleolar), and is the
most abundant RNA modification [70]. Pseudouridine in rRNA
and tRNA has been shown to stabilize and maintain structure and
functions in mRNA decoding, ribosome assembly, processing, and
translation [71]. Pseudouridine synthase (CCPI-G17) is an enzyme that
modifies RNA by converting uridine to pseudouridine. The absence
of pseudouridine synthase demonstrated temperature sensitivity and
decreased virulence in Candida albicans [72]. Stem—loop 69 of 23S
rRNA contains three highly conserved pseudouridines (C) at positions
1911, 1915, and 1917, synthesized by the pseudouridine synthase
RluD [73]. One of the pseudouridines in stem-loop 69 (position
1915) is further methylated by RImH to take part in the final steps
of ribosome biosynthesis [74,75]. Cells lacking the r/mH gene have
a clear growth disadvantage [76], and the methyltransferase confers a
fitness advantage under stress conditions. Pseudouridine synthase and
the 23S rRNA pseudouridine methyltransferase RlmH (CCPI-G78)
modify RNA structures, potentially increasing the stability of ribosomal
RNA and enhancing protein synthesis under stress. The Hsp20 family
protein (CCPI-G79) acts as a molecular chaperone, protecting bacterial
proteins from denaturation under heat or immune attack.

5. CONCLUSION

This study offers a comprehensive genomic analysis of C. chauvoei
strain SBP 07/09, identifying eight Pls that play crucial roles in the
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bacterium’s ability to cause blackleg disease in cattle. Advanced
bioinformatic tools allowed for detailed functional prediction of genes,
functions, and pathways within these PIs. The combinatorial use of this
study linked the genomic islands or genes of the genomes to metabolic
pathways, revealing critical insights into processes such as stress
response, nutrient acquisition, and anaerobic survival. Key findings
include the identification of genes associated with DNA recombination,
glycolysis, and cellular membrane stability, which enhance the
bacterium’s adaptability and virulence. The study underscores the
importance of these genetic elements in facilitating C. chauvoei's
survival under anaerobic conditions typical of infected tissues, enabling
efficient colonization and persistence. Future studies will include
developing a bioinformatics method for linking the genomic islands of
the genomes to the phenotypes via metabolic pathways and (2) using
experimental validation strategies such as microarray studies to validate
the proof of concept. Understanding these mechanisms provides a
foundation for future research on developing vaccines or therapeutic
targets of Clostridium species, leading to potential vaccines or drugs,
ultimately helping to mitigate its economic impact on cattle farming.
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