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ABSTRACT

Clostridium chauvoei, the causative agent of blackleg disease in cattle, presents significant economic and health 
challenges due to its high mortality rates and rapid disease progression. This study focuses on the in silico genomic 
characterization of C. chauvoei strain SBP 07/09 Swiss Bovine Pathogen, referring to a strain isolated in July 
2009. The study identified and annotated pathogenic islands (PIs) contributing to the bacterium’s virulence and 
adaptability. Using IslandViewer4, eight distinct PIs were identified, and 81 genes were detected using GeneMark.
hmm-P across these PIs. The genes are categorized as 60 functional genes, 20 hypothetical proteins, and one gene 
with no assigned function. Functional annotation of genes using tools such as Basic Local Alignment Search Tool 
(BLASTp), InterPro, and BlastKOALA revealed that these genes are implicated in essential processes, including stress 
response, metabolism, genetic mobility, DNA repair, and anaerobic survival. Pathway analysis was performed using 
Kyoto Encyclopedia of Genes and Genomes (KEGG) Mapper and BioCyc Pathway Tools, utilizing KO identifiers 
assigned by BlastKOALA and whole genome data, respectively. This analysis revealed several key metabolic and 
regulatory pathways associated with the detected genes. These include nutrient transport, energy production, cofactor 
biosynthesis, and environmental adaptation. These pathways will likely contribute significantly to the organism’s 
adaptability, anaerobic lifestyle, and survival within the host environment. Key findings include the identification of 
genes facilitating nutrient uptake, energy production, and genomic integrity maintenance. All of which enhance C. 
chauvoei’s virulence and survival in hostile host environments. These insights offer valuable targets for developing 
preventative and therapeutic strategies to combat blackleg disease, reducing its economic burden on cattle farming.

1. INTRODUCTION

Clostridium chauvoei, a Gram-positive anaerobe, is the primary 
pathogen responsible for blackleg disease in cattle, a condition marked 
by acute myositis and high mortality. Blackleg primarily affects young 
cattle and is characterized by the sudden onset of lameness, fever, and 
rapid progression to fatality. The infection cycle of C. chauvoei in 
ruminant hosts begins with the entry of spores into the host through 
ingestion or contamination of wounds or mucosal abrasions. Ingested 
spores reach the intestines, traverse the bloodstream or lymphatic 
system, and migrate to muscle tissues. Alternatively, spores introduced 
through wounds follow a similar path to muscle tissues. In healthy 
tissues, the spores remain dormant until activation, which occurs 
under anaerobic conditions, such as those created by muscle injury or 
tissue damage that reduces oxygen levels. Once activated, the spores 
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germinate into vegetative cells, marking the transition to the growth 
phase [1-4].

During vegetative growth, the bacteria proliferate rapidly in the 
anaerobic environment, releasing toxins and enzymes. Key virulence 
factors include beta pore-forming toxins (C. chauvoei cytotoxin 
A and Chauveolysin) [5,6], which lyse host cells and cause tissue 
necrosis. Clostridial exotoxins such as hyaluronidase, DNase, and 
neuraminidase, degrade the extracellular matrix to facilitate bacterial 
spread [7]. The toxin activity results in hemorrhagic necrosis of muscle 
tissues, gas production from bacterial metabolism, and the formation 
of characteristic dark, gas-filled lesions (blackleg), accompanied 
by severe inflammation and edema. As the infection progresses, 
toxins enter the bloodstream, causing toxemia and septicemia. This 
systemic dissemination leads to fever, lameness, swelling, and rapid 
deterioration of the host’s condition, often culminating in shock and 
death if untreated [7]. While attempting to limit the infection through 
macrophages and antibody production, the host immune response is 
typically overwhelmed by the rapid bacterial proliferation and potent 
toxin activity. In severe cases, the infection cycle ends with the host’s 
death, completing the bacterium’s propagation in the environment 
through post-mortem spore release from decomposing tissues [8] 
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[Figure  1]. These spores in the environment and intestinal tracts of 
cattle can remain dormant until activated by anaerobic conditions, 
leading to tissue colonization and subsequent disease [5,8].

The pathogenicity of C. chauvoei stems from its ability to adapt to 
diverse environments within the host. This adaptability is primarily 
facilitated by genetic elements known as pathogenic islands (PIs), 
which harbor clusters of genes that enhance the bacterium’s ability to 
evade the host immune system, utilize available nutrients, and survive 
under anaerobic conditions. Understanding the genes within these PIs 
is crucial for elucidating the mechanisms underlying C. chauvoei’s 
virulence, which can inform effective disease management and 
prevention strategies [7,9] [Figure 1]. The objective of the present study 
is to employ a multi-tiered bioinformatic approach: (1) To identify PIs 
within the genome and to predict the genes and their functions within 
these PIs, and (2) to, consequently, perform the metabolic pathway 
analysis for the PIs and whole genome data of C. chauvoei. This 
integrative approach allows for identifying the genes that play a key 
role in processes and pathogenicity.

2. MATERIALS AND METHODS

2.1. Genome Data Sampling
The genome sampling considers the genome’s completeness, strain 
history, and pathogenicity report. The whole genome sequence of 
C. chauvoei SBP 07/09, with the following accession number NZ_
CP027286, is obtained from NCBI [10]. This whole genome sequence 
is used to predict the PIs.

2.2. Screening of PIs by in silico Genome Analysis
The modified protocol of Nammi et al. [11] is used to identify the PIs 
in C. chauvoei SBP 07/09. PIs are screened and identified using the 
tool Islandviewer4 [12]. IslandViewer4 integrates three methods for 

predicting genomic islands: sequence-based, comparative-based, and 
codon-based methods. The sequence-based method focuses on sequence 
composition, particularly dinucleotide bias, and detects the presence of 
mobility genes such as integrases and transposases to locate genomic 
islands. IslandPath-DIMOB [13] is an example of the sequence-based 
method. The comparative-based method uses comparative genomics 
to identify genomic islands by detecting regions present in the target 
genome but absent in closely related genomes, suggesting horizontal 
gene transfer. IslandPick [14] is an example of the comparative-based 
method. Finally, the codon-based method identifies genomic islands 
by analyzing codon usage bias, as these regions often exhibit codon 
patterns distinct from the rest of the genome. SIGI-Hidden Markov 
Model (HMM) [15] is an example of a codon-based method. HMMs 
pinpoint areas with atypical codon usage. The whole genome sequence 
of this strain was downloaded from NCBI and submitted in FASTA 
format as input to Islandviewer4 for predicting PIs. Islandviewer4 is 
freely available at https://www.pathogenomics.sfu.ca/islandviewer. 
These PIs are further used to predict the genes.

2.3. Prediction of Genes in PIs
GeneMark.hmm is a tool that uses HMM to predict genes in genomic 
sequences [16]. GeneMark.hmm family is widely used to identify 
protein-coding genes within DNA sequences. The prokaryotic version 
GeneMark.hmm-P identifies start and stop codons, ribosomal binding 
sites, and predicts operons in bacteria and archaea [17]. The tool 
provides gene prediction results in output formats, which include 
gene coordinates, coding sequences (CDS), and protein translations. 
The nucleotide sequences of each PI are downloaded from NCBI and 
are submitted in the FASTA format as an input to GeneMark.hmm-P 
for gene prediction. GeneMark.hmm-P is freely available at https://
genemark.bme.gatech.edu/gmhmmp.cgi. These translated protein 
sequences are used to predict the function of the genes.

Figure 1: The lifecycle of Clostridium chauvoei in ruminants (cattle), causing blackleg disease.
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2.4. Prediction of Gene Function Using Different Tools
The function of the genes was predicted using three different 
methods: (a) Homology-based method, (b) domain-based method, and 
(c) metabolic category-based method.

2.4.1. Homology-based method
The homology-based method predicts the function of a gene or protein 
based on its homology (similarity) to other known sequences. The 
underlying assumption is that if two sequences share a significant 
level of similarity, they may have evolved from a common ancestor 
and are likely to retain similar functions. The query sequence (gene/
protein of unknown function) is compared against a database of 
sequences with known functions using a tool based on a homology-
based method. BLAST, is an essential tool for identifying sequences 
similar to a query sequence, which can provide insights into the 
sequence’s function, structure, and evolutionary relationships. BLAST 
for proteins (BLASTp) predicts the protein’s function by identifying 
similarities between a query protein sequence and known protein 
sequences in a database [18]. This method relies on the principle that 
proteins with similar sequences often share similar functions, as they 
tend to have conserved structural or functional domains. The translated 
protein sequences of the genes are used to predict the function of the 
genes. The amino acid sequences of each gene are submitted in the 
FASTA format as input to BLASTp to predict gene function. The 
sequence similarity and E-value are considered to interpret the results 
and predict the gene’s function. BLASTp is freely available at https://
blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins.

2.4.2. Domain-based method
The domain-based method predicts the function of a gene or a 
protein by identifying specific protein domains. Protein domains 
are conserved structural or functional units within proteins, often 
responsible for particular biochemical activities or interactions. Since 
these domains are evolutionarily conserved across different proteins, 
they can provide reliable clues about a protein’s function even 
when the overall sequence similarity is low. InterPro is a tool built 
on a domain-based method to predict protein functions and provide 
annotations by combining information from several protein signature 
databases [19]. The translated protein sequences of each gene are 
submitted in the FASTA format as input to InterPro. The tool then 
scans these sequences against its databases and generates a report 
detailing identified protein families, domains, functional sites, and 
related GO terms. The generated report is used to interpret the results 
and predict the gene’s function. The tool InterPro is freely available at 
https://www.ebi.ac.uk/interpro/.

2.4.3. Metabolic category-based method
The metabolic category-based method predicts a gene’s function 
by identifying a protein’s metabolic category. BLAST KEGG 
Orthology And Links Annotation (BlastKOALA) is a tool built on a 
metabolic category-based method that integrates homology-based and 
pathway-based function prediction within the context of metabolic 
and cellular processes. The tool BlastKOALA is part of the KEGG. 
BlastKOALA is an automatic annotation server for genome sequences, 
which performs KO (KEGG Orthology) assignments to characterize 
individual gene functions. BlastKOALA also reconstructs KEGG 
pathways, Biomolecular Relations in Information Transmission and 
Expression (BRITE) hierarchies, and KEGG modules to infer high-
level functions of the organism or the ecosystem. In BlastKOALA, the 
KO assignment is performed by a modified version of the internally 
used KOALA algorithm. Initially, the BLAST search is against a non-
redundant dataset of pangenome sequences at the species, genus, or 

family level, which are generated from the KEGG GENES database 
by retaining the KO content of each taxonomic category [20]. The 
translated protein sequences of each gene are submitted in the FASTA 
format to BlastKOALA. The output of these results includes gene 
function and KEGG Orthology identifiers (KO ID), which were further 
interpreted. The tool BlastKOALA is freely available at https:// www.
kegg.jp/blastkoala/. The result files were downloaded and further used 
for KEGG Mapper analysis.

2.5. Metabolic Pathway Analysis for Identification of 
Genes and Pathways Involved in the Pathogenesis of C. chauvoei 
SBP 07/09
The metabolic pathways for C. chauvoei SBP 07/09 were analyzed 
to identify genes and pathways involved in pathogenesis. Two 
complementary approaches were used: Mapping pathways using 
KEGG mapper and constructing a pathway/genome database (PGDB) 
using BioCyc pathway tools. The analysis focused on genes located 
in PIs to explore their potential roles in metabolism and pathogenesis.

2.5.1. Mapping of metabolic pathways using KEGG mapper 
based on KO IDs
The genes identified during functional annotation through 
BlastKOALA, which predicts the KO IDs, were analyzed for their roles 
in metabolic pathways using KEGG Mapper. The tool KEGG Mapper 
is freely available at https://www.genome.jp/kegg/tool/map_pathway.
html. KEGG Mapper [21,22] provided a pathway mapping of these 
annotated genes by integrating them into existing metabolic pathways 
within the KEGG framework. This tool highlighted pathways linked to 
metabolic processes and pathogenesis based on the input data.

2.5.2. Building of metabolic pathways using BioCyc pathway 
tools based on whole genome sequence data
KEGG Mapper assigned annotated genes to metabolic pathways based 
on KO identifiers, but its scope was limited to proteins represented in the 
KEGG database. To address this limitation, BioCyc pathway tools [23] 
were employed to reconstruct genome-wide pathways, including both 
characterized and uncharacterized proteins. A comprehensive metabolic 
map was generated by importing the annotated genome, offering a 
broader view of C. chauvoei’s metabolic network. Pathway Tools 
covered KO-mapped proteins and inferred pathways for genes absent 
in KEGG, enabling deeper insight into metabolic potential. In addition, 
it supported pathway enrichment and experimental data integration, 
enhancing the resolution of genome-wide metabolic analysis.

2.5.3. Correlation of pathways identified between KEGG mapper 
and BioCyc pathway tools
A comparative manual correlation of results from both platforms 
enabled deeper insights into the genome’s metabolic potential via 
KEGG Mapper and BioCyc Pathway Tools. By comparing the outputs, 
overlapping and unique pathways were identified. BioCyc has filled 
the gaps left by KEGG, while KEGG’s standardized pathways helped 
validate BioCyc’s results. This complementary approach leveraged the 
strengths of both tools: KEGG’s precision in curated pathways and 
BioCyc’s breadth in genome-wide reconstruction, yielding a more 
complete understanding of C. chauvoei’s metabolic network.

3. RESULTS

3.1. PIs in C. chauvoei strain SBP 07/09
The PIs of C. chauvoei strain SBP 07/09 were predicted using the 
IslandViewer4 tool. The different prediction tools of IslandViewer4 
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applied to predict PIs are IslandPath-DIMOB and SIGI-HMM. 
The IslandPath-DIMOB identified seven PIs, whereas SIGI-HMM 
detected one. The results of PIs are further refined by checking for 
any overlaps in island start and end positions to observe distinct PIs 
[Table 1]. The study identified eight distinct PIs in C. chauvoei strain 
SBP 07/09. The nomenclature for the PI is generated; for example, the 
first PI in the organism is C. chauvoei PI 1 labelled CCPI1 [Table 1].

3.2. Genes and their Functions
Gene prediction for the eight PIs of C. chauvoei strain SBP 07/09 
using GeneMark.hmm.p identified 81 genes [Supplementary Table 1]. 
Functional annotation was performed using three complementary tools: 
BLASTp (homology-based), InterPro (domain-based), and BlastKOALA 
(metabolic category-based) [Supplementary Table  2]. Based on the 
combined results, genes were classified into three categories: (a) Genes 
with predicted functions, (b) hypothetical proteins, and (c) genes with 
no functional assignment. Genes with known homologues or functional 
annotations were assigned to the first category. Genes predicted with 
open reading frames but lacking homology were labeled hypothetical 
proteins. Genes that matched neither known functions nor hypothetical 
annotations were categorized as having no function, typically due to the 
absence of database matches. This classification yielded 60 functional 
genes, 20 hypothetical proteins, and one gene with no function 
[Figure 2 and Supplementary Table 3]. Each gene was assigned a unique 
identifier based on its position, for example, the first gene in a PI was 
labeled CCPI-G1 [Supplementary Table 1]. In addition, this organism’s 
unique genes are summarized along with their roles in Table  2. The 
annotations present a key limitation: If genes such as hypothetical 
proteins and genes with no function reside within genomic islands, their 
unknown function prevents definitive inference of their role.

3.3. Metabolic Pathway Analysis for Identification of Genes 
and Pathways Involved in the Pathogenesis of C. chauvoei SBP 
07/09
The metabolic pathway analysis of C. chauvoei SBP 07/09 was 
conducted using KEGG Mapper and Pathway Tools to identify genes 
and pathways associated with the organism’s pathogenesis.

3.3.1. KEGG mapper analysis
The metabolic pathways of C. chauvoei SBP 07/09 were mapped 
using KEGG mapper based on KO IDs, which were assigned through 
functional annotation using the BLASTKOALA method. A  total of 
22 proteins were identified to be involved in 40 metabolic pathways 
within the KEGG database [Supplementary Table  4]. Further, after 
carefully evaluating the pathways, seven were assumed to be involved 
and play an essential role in the organism’s pathogenicity.

3.3.2. BioCyc pathway tools analysis
The pathway analysis of C. chauvoei SBP 07/09 was conducted 
using BioCyc pathway tools, utilizing the whole genome sequence 
obtained from NCBI to reconstruct a metabolic PGDB. The resulting 
database provided a comprehensive overview of metabolic pathways, 
enzymatic reactions, transporter reactions, polypeptides, protein 
complexes, enzymes, transporters, compounds, transcription units, 
and tRNAs [Table  3, Figure  3 and Supplementary Figure  1]. To 
evaluate the accuracy and biological relevance of these predictions, 
the reconstructed pathways were further classified into six categories: 
Consistent, partially consistent, poor topological match, missing, not 
reported, and false positives [Table 4 and Supplementary Table 5]. In 
C. chauvoei, 155 out of 210 pathways were consistent, and 22 were 
missing [Table 4 and Supplementary Table 5]. Among these pathways, 

Table 1: The number of pathogenic islands in Clostridium chauvoei strain 
SBP 07/09.

S. No. Island No. Island start Island end Length

1 CCPI1 537993 545177 7184

2 CCPI2 725827 738326 12499

3 CCPI3 1322471 1328899 6428

4 CCPI4 1811552 1819055 7503

5 CCPI5 2258243 2268835 10592

6 CCPI6 2610857 2631723 20866

7 CCPI7 2786754 2790862 4108

8 CCPI8 2830535 2845432 14897

Table 2: The summary of unique genes in the Clostridium chauvoei strain 
SBP 07/09.

S. no Gene. no Gene name Role

1 CCPI‑G2 Rpn family 
recombination‑promoting 
nuclease/putative transposase

Recombination or 
phage defense

2 CCPI‑G3 Rpn family 
recombination‑promoting 
nuclease/putative transposase

Recombination or 
phage defense

3 CCPI‑G5 Rpn family 
recombination‑promoting 
nuclease/putative transposase

Recombination or 
phage defense

4 CCPI‑G6 Rpn family 
recombination‑promoting 
nuclease/putative transposase

Recombination or 
phage defense

5 CCPI‑G7 Rpn family 
recombination‑promoting 
nuclease/putative transposase

Recombination or 
phage defense

6 CCPI‑G9 Rpn family 
recombination‑promoting 
nuclease/putative transposase

Recombination or 
phage defense

7 CCPI‑G31 ArpU family phage 
packaging/lysis regulator

Regulation of phage 
lysis and packaging 
genes

8 CCPI‑G52 PTS lactose/cellobiose 
transporter subunit IIA

PTS‑mediated 
sugar uptake

9 CCPI‑G53 Lichenan‑specific PTS 
enzyme IIB component

Transports 
β‑glucans

10 CCPI‑G54 PEP phosphonomutase Phosphonate 
metabolism

11 CCPI‑G55 PTS sugar transporter subunit 
IIC

Sugar transport via 
PTS system

12 CCPI‑G58 Class B sortase Surface protein 
anchoring

13 CCPI‑G59 Alpha‑L‑fucosidase Degradation of 
fucose‑containing 
glycans

14 CCPI‑G60 Glycoside hydrolase family 
16 protein

Environmental 
carbohydrate 
metabolism

15 CCPI‑G61 PTS sugar transporter subunit 
IIC (again)

Sugar transport via 
PTS system

16 CCPI‑G77 YjjG family noncanonical 
pyrimidine nucleotidase

Pyrimidine salvage
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unique pathways and their roles that were not reported or studied are 
summarized in Table  5. The genes from PIs present within BioCyc 
pathways and that are assumed to be involved and play an essential role 
in the organism’s pathogenicity are shown in Supplementary Table 6.

Table 5: The summary of unique metabolic pathways in Clostridium 
chauvoei SBP 07/09.

S. no Pathways Role

1 Arsenate detoxification I The pathway reduces arsenate 
to arsenite (detoxification)

2 Cytidylyl MoCo sulfurylation The pathway is essential for 
sulfuration of MoCo, which 
is involved in crucial redox 
reactions in the global C‑, N‑, 
and S‑cycles

3 Dipyrromethane cofactor 
biosynthesis

Cofactor for the formation of 
preuroporphyrinogen

4 Ethanol degradation I The pathway oxidizes ethanol 
to acetaldehyde/acetate

5 Folate transformations III 
(Escherichia coli)

The pathway transforms 
folate into methyl and formyl 
derivatives.

6 Pyridoxal 5’‑phosphate 
salvage I

The pathway salvages 
Pyridoxal 5’‑phosphate (PLP) 
from pyridoxal, pyroxidine, and 
pyridoxamine.

7 Queuosine biosynthesis III 
(queuosine salvage)

The pathway is involved in 
the denovo biosynthesis of 
queuosine, and queuosine is a 
modified nucleoside in specific 
tRNAs in bacteria.

8 Tetrahydrofolate salvage from 
5,10‑methenyltetrahydrofolate

The pathway salvages 
tetrahydrofolate from 
5,10‑methenyltetrahydrofolate

9 Thiamine diphosphate 
salvage III

The pathway recycles thiamine 
when it’s depleted and is 
essential for the bacteria’s 
survival. 

MoCo: Molybdenum cofactor.

Table 3: The overview of reconstruction of metabolic pathways based on 
the whole genome of Clostridium chauvoei strain SBP 07/09.

S. no Description Number

1 Pathways 169

2 Enzymatic reactions 1052

3 Transport reactions 92

4 Polypeptides 2556

5 Protein complexes 118

6 Enzymes 558

7 Transporters 99

8 Compounds 798

9 Transcription Units 1754

10 tRNAs 87

Table 4: The different categories of metabolic pathways built using 
pathologic Clostridium chauvoei strain SBP 07/09.

S. No. Category of pathways Number of pathways

1 Consistent 155

2 False positives 8

3 Not reported 9

4 Partially consistent 12

5 Poor topological match 4

6 Missing 22

Total 210

Figure 2: The figure shows the graphical representation of summary of gene category classification. (a) Gene categorized into  genes with functions,  genes with 
hypothetical proteins, and  genes with no function. (b) Genes with Functions in each islands along with total number of proteins -   total no. of genes,  

 BLASTp,  InterPro, and  BLASTKOALA. (c) Genes with hypothetical proteins and (d) Genes with no function. The legend is the same for (c) and (d) as (b).

a

c d

b
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3.3.3. Correlation of KEGG mapper and BioCyc pathway tools
The results obtained from both tools, KEGG Mapper and BioCyc 
pathway tools, were compared and correlated to assess the involvement 
of metabolic pathways in virulence and survival [Table 6]. A total of 
36 proteins encoded within the PIs were mapped to 49 metabolic 
pathways across both KEGG mapper and BioCyc pathway tools 
analyses, highlighting their potential roles in the bacterium’s 
pathogenic mechanisms. A comprehensive metabolic pathway analysis 
using KEGG Mapper and BioCyc pathway tools revealed a high 

similarity, demonstrating consistency in core metabolic predictions 
and highlighting unique pathways identified by each tool.

BioCyc pathway tools detected pathways such as L-threonine 
degradation I, S-propane-1,2-diol degradation, cardiolipin 
biosynthesis I, and inosine-5’-phosphate biosynthesis II, which 
were absent in KEGG mapper, likely due to its reliance on KO IDs. 
Conversely, the KEGG Mapper mapped pathways such as taurine 
and hypotaurine, pyruvate, and propanoate metabolism, which were 

Figure 3: The figure shows the metabolic map or overview of classified pathways of pathway genome database of Clostridium chauvoei SBP 07/09 generated in 
pathway tools.
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Table 6: The manual correlation of pathways identified by KEGG mapper and BioCyc pathway tools.

S. no Gene no. Gene name Gene synonym KEGG pathways Pathway tools

1 CCPI‑G11 K15024; putative phosphotransacetylase 
[EC: 2.3.1.8]

Phosphate propanoyltransferase Pyruvate metabolism; 
Propanoate 
metabolism

L‑threonine degradation 
I, S‑propane‑1,2‑diol 
degradation

2 CCPI‑G44 gpmI; 2,3‑bisphosphoglycerate‑independent 
phosphoglycerate mutase [EC: 5.4.2.12]

Putative=2,3‑bisphosphoglycerate‑ 
independent phosphoglycerate mutase

Glycolysis/
Gluconeogenesis

Gluconeogenesis I, 
glycolysis IV, glycolysis 
I (from glucose 
6‑phosphate)

3 CCPI‑G45 TPI, tpiA; triosephosphate isomerase 
(TIM) [EC: 5.3.1.1]

Putative Triosephosphate isomerase Glycolysis/
Gluconeogenesis

Glycolysis I (from 
glucose 6‑phosphate), 
gluconeogenesis I, 
glycolysis IV

4 CCPI‑G46 PGK, pgk; phosphoglycerate kinase 
[EC: 2.7.2.3]

Phosphoglycerate kinase Glycolysis/
Gluconeogenesis

Glycolysis I (from 
glucose 6‑phosphate), 
gluconeogenesis I, 
glycolysis IV

5 CCPI‑G47 GAPDH, gapA; glyceraldehyde 
3‑phosphate dehydrogenase 
(phosphorylating) [EC: 1.2.1.12]

Type I glyceraldehyde‑3‑phosphate 
dehydrogenase

Glycolysis/
Gluconeogenesis

Glycolysis I (from 
glucose 6‑phosphate), 
gluconeogenesis I, 
glycolysis IV

not explicitly detected in BioCyc Pathway Tools. BioCyc Pathway 
Tools primarily captured variations of core metabolic pathways, 
including glycolysis (e.g., glycolysis IV, glycolysis I from glucose-
6-phosphate) and gluconeogenesis (e.g., gluconeogenesis I). 
At the same time, KEGG Mapper identified broader functional 
pathways such as microbial metabolism in diverse environments 
and biosynthesis of secondary metabolites. In addition, KEGG 
Mapper mapped several pathways linked to pathogenicity and stress 

response, including Salmonella infection, pathogenic Escherichia 
coli infection, biofilm formation in Vibrio cholerae, flagellar 
assembly, and two-component regulatory systems, suggesting a 
potential link between metabolism and virulence. Overall, KEGG 
Mapper provided a broad metabolic overview, whereas BioCyc 
Pathway Tools enabled a more detailed reconstruction of organism-
specific variations, underscoring the complementary nature of both 
tools [Supplementary Table 4].

Figure 4: The genes identified as transcriptional regulators in the pathogenic islands of Clostridium chauvoei are involved in activating enzymes, transporters, 
energy-related genes, etc.
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Figure 5: The genes that are transporters, which aid the uptake of sugars and metabolites from the environment. The highlighted genes are identified in the 
pathogenic islands of Clostridium chauvoei.

Figure 6: The pathways related to energy production which ensure efficient glucose utilization and others anaerobic metabolic pathways. The highlighted genes 
are present in the pathogenic islands of Clostridium chauvoei.



Pasam et al.: Journal of Applied Biology & Biotechnology 2026;14(2):212-225220

4. DISCUSSION

This study aimed to enhance the understanding of C. chauvoei by 
identifying its PIs and predicting genes potentially linked to virulence 
and survival. Functional annotation of these genes was performed 
using homology-based, domain-based, and metabolic category-based 
approaches to ensure a comprehensive classification. To further 
investigate the metabolic potential of C. chauvoei, a genome-scale 
metabolic pathway reconstruction was carried out, and KO IDs derived 
from metabolic category-based function prediction were mapped onto 
metabolic pathways. A comparative analysis was then conducted by 
manually correlating pathways obtained from KEGG and BioCyc 
Pathway Tools. This allowed for an in-depth evaluation of pathway 
organization, enzyme annotations, and metabolic variations. This 
comparison provided insights into key metabolic processes that may 
contribute to the organism’s adaptation and pathogenicity. Finally, the 
reconstructed pathways were examined in the context of C. chauvoei’s 
lifecycle, linking its metabolic capabilities to survival strategies and 
infection mechanisms. The steps based on the standard tools provided 
us with the expected results. At the same time, the combinatorial 
use of these tools in this study linked the genomic islands of the 
genomes to metabolic pathways. The present section comprehends the 
understanding of the current study, provides insights, and discusses 
how the proteins encoded by the PIs help C. chauvoei’s adapt to the 
situation during pathogenicity.

The genes encoded by these PIs are the genomic data generated in 
this method, which is helpful for disease management. Disease 
management is an essential aspect for understanding and controlling 
a disease. The first step in understanding a disease is to identify the 
organism causing the disease. However, the bacterial pathogen rapidly 
evolves and generates highly variable genotypes or isolates. Therefore, 
identifying the isolate among the group of isolates mainly associated 

with the disease is essential. Thus, the genomic data can be used as 
molecular markers that allow us to discriminate different strains within 
a species and can be applied to disease management.

The proteins encoded by the PIs enhance C. chauvoei’s ability to survive 
and adapt to diverse environments. They also manage stress responses, 
effectively sustain metabolic processes, manage energy production, 
respond to environmental cues, maintain genomic integrity, and acquire 
beneficial genetic traits. The bacterium’s flexible genetic toolkit, robust 
energy production, and membrane stabilization systems collectively 
allow it to persist and evade host defenses. If conditions within the host 
become unfavorable, some bacterial cells initiate sporulation, forming 
resilient spores. These spores can withstand environmental stress, 
ensuring the bacterium’s survival and potential for future transmission.

4.1. Genes Coding for Stress Sensor Proteins Responding to 
Environmental Cues
C. chauvoei spores enter a ruminant host, often through ingestion 
or wound contamination; they encounter a nutrient-rich but hostile 
environment that initiates spore germination into active bacterial cells. 
The active bacterial cells are known for having proteins that detect stress 
due to the acidic and low-oxygen conditions in host tissues. Gram-
negative bacteria harbor a highly conserved stress response system 
known as the envelope stress response (Esr) system, formerly known as 
phage shock protein (Psp) response system [24] [Figure 4]. The response 
system senses the signal from the environment and transduces it to the 
cytoplasm [25]. The Psp systems of E. coli have six proteins, PspA, B, 
C, D, F, and G. In general, stress mislocalizes protein secretin from the 
cell envelope due to its dissociation from the chaperone-like pilot protein 
and also reduces proton motive force. These events help proteins PspB 
and PspC (CCPI-G10) sense the signals in the extracytoplasmic space 
and help them bind to PspA, thereby releasing PspF from PspA. The 

Figure 7: The figure was derived from Jiang et al., [77] and modified. The summary of pathways and flow describing lactate utilization in an anaerobic 
environment, unknown mechanisms involving NO resistance, energy production and metabolism, and resistance to serum killing.
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protein PspF activates the promoters of pspG and pspA and subsequently 
turns on the pspABCDE operon [26]. A rapid sensing of environmental 
changes marks this transition, and this detection acts as an alert. This 
initiates a bacterial response to activate RNA polymerase and a number of 
transcriptional regulators that trigger defense mechanisms, coordinating 
numerous proteins across several functions. The environment’s hostility 
becomes apparent, and transcriptional regulators play a critical role in 
adjusting gene expression to maximize bacterial survival.

4.2. Genes Coding for Transcriptional Regulators to Sustain 
Metabolic Process
The sigma factor of RNA polymerase (CCPI-G49) is a transcription 
initiation factor that enables specific binding of RNA polymerase 
(RNAP) to gene promoters needed to initiate transcription in 
bacteria. The specific sigma factor used to activate transcription of a 
given gene will vary, depending on the gene and the environmental 
signals. RNAP factor sigma-54 is needed to initiate transcription in 
bacteria in a nitrogen-limited environment [27,28]. The protein PspF 
also activates the σ54-dependent transcription of the pspABCDE 
operon [26]. The sigma-54 transcriptional regulator and its 
interacting counterpart, the Sigma-54-interacting transcriptional 
regulator (CCPI-G51), add specificity to this response. This helps 
to focus on genes that help the bacterium function optimally in low-
oxygen conditions [Figure  4] [29]. The sigma-54 transcriptional 
regulator is known for flagellar biosynthesis, motility [30-34], 
amino acid metabolism [35-37], quorum sensing, biofilm formation, 
virulence [38-40], and bacterial natural product genes [41].

The helix-turn-helix transcriptional regulator (CCPI-G40, G41) and 
multiple antibiotic resistance regulator (MarR) family regulators 
(CCPI-G75), belonging to the family winged helix-turn-helix, activate 
genes necessary for pathogenicity and stress response [Figure 4]. This 
helps the bacterium to adapt its metabolism and defense mechanisms 
to the nutrient-limited, anaerobic conditions within the host. The MarR 
protein is essential for diverse biological functions, which are crucial 
to the survival of pathogenic bacteria. The functions include resistance 
to multiple antibiotics, regulation of virulence-associated traits, 
virulence genes, hemolytic activity, extracellular protease activity, 
and motility [42-44]. The signaling molecules or ligands that activate 
the transcriptional regulator MarR are small phenolic compounds, 
metal ions, small peptides, and oxidative stress [45]. The repressor, 
open reading frame, kinase (ROK) family transcriptional regulators 
(CCPI-G56) are characterized by carbohydrate-sensing domains 
shared with sugar kinases, and the ROK family transcriptional 
regulator modulates pathways involved in carbohydrate metabolism, 
fine-tuning energy production to the available substrates in host tissues 
[Figure 4].

Bacteria extensively use autolysins to remodel, recycle, and even 
destroy their cell walls. The autolysin regulatory protein (ArpU) 
family transcriptional regulator (CCPI-G31) is linked to the regulation 
of muramidase-2 (peptidoglycan hydrolase-2 or autolysin) [Figure 4]. 
Bacteria would use ArpU to remodel the cell wall affected by 
stress. Autolysins may also degrade peptidoglycan to avoid their 
own recognition by the host’s innate immune system. Collectively, 
these transcriptional regulators control a network of genes that help 
C. chauvoei respond to host conditions and establish infection. During 
this process, the equilibrium between the synthesis and degradation of 
mRNA in the pathogen is needed. The processing and degradation of 
mRNAs are initiated by RNase Y (CCPI-G24), an endoribonuclease 
anchored to the cell membrane [Figure 4 and Supplementary Figure 2]. 

Exoribonucleases degrade the cleaved products. In many bacteria, 
these RNases, RNA helicases, and other proteins are organized in 
a protein complex called the RNA degradosome, which plays an 
essential role in virulence and pathogenicity [46,47].

4.3. Genes for Managing Energy Production
The study identified transcription regulators that activate enzymes, 
transporters, and energy-related genes that manage energy production. 
The enzymes such as alpha-L-fucosidase (CCPI-G59) and glycoside 
hydrolase family 16 protein (CCPI-G60) break down polysaccharides 
[Figure 5]. Gut microbes produce fucosidases [48-51], cleaving fucose 
from host glycans (free oligosaccharides and glycoconjugates) to 
maintain intestinal homeostasis [52,53]. This outcome also ensures 
additional carbon sources to microbes for energy production, even 
under oxygen-limited conditions in anaerobic respiration. Transporters 
are crucial for nutrient uptake, which sustains the bacterium during 
infection. The major facilitator superfamily (MFS) transporter 
(CCPI-G76) facilitates the uptake of sugars and possibly other 
metabolites from the host [Figures 4 and 6, Supplementary Figure 3]. 
FucP and its homologues belonging to the MFS family transported 
L-fucose across cell membranes in a pH-dependent manner [54-56].

In general, pathogens form communities of microorganisms known 
as biofilms, and biofilms are protected by extracellular polymeric 
substance (EPS) made of polysaccharides, proteins, lipids, and 
extracellular DNA [57]. The mature biofilms undergo dispersal, which 
can be divided into two types: Active and passive dispersal, where 
active dispersal plays a vital role in the life cycle of a biofilm that 
contributes to bacterial survival and disease progression. Passive 
dispersal refers to dispersal by external forces. Active dispersal 
refers to dispersal triggered by microbes in the biofilm in response 
to environmental changes such as nutrient starvation, phagocyte 
challenge, and unfavorable oxygen levels [58]. The enzyme glycoside 
hydrolase family 16 protein produced by the bacterium may degrade 
the polysaccharide, poly(1,6)- N-acetyl-d-glucosamine (PNAG), by 
hydrolyzing β(1,6) glycosidic linkages, forming N-acetylglucosamine 
(GlcNAc) [59]. GlcNAc then enters the cell and is deacetylated into 
acetate and GlcN-6-P by GlcNAc-6-phosphate deacetylase, which 
belongs to the amidohydrolase superfamily (CCPI-G62) [60,61]. Then, 
GlcN-6-P is used in two main pathways: PG recycling pathway and 
the glycolysis pathway. Thus, the two enzymes glycoside hydrolase 
family 16 protein and GlcNAc-6-phosphate deacetylase play a role in 
bacterial survival and disease progression.

Transporters are crucial for nutrient uptake, which sustains the 
bacterium during infection. The MFS transporter works alongside the 
phosphotransferase system (PTS) transporters, facilitating the uptake 
of sugars and possibly other metabolites from the host [Supplementary 
Figure 4]. The various PTS transporters include PTS lactose/cellobiose 
transporter subunit  IIA (CCPI-G52), and PTS sugar transporter 
subunit  IIC (CCPI-G55) [Figure 5 and Supplementary Figure 4]. In 
addition, the putative Lichenan-specific phosphotransferase enzyme 
IIB component (CCPI-G53) is also identified in the study. Histidine-
phosphorylatable phosphocarrier protein (HPr) family phosphocarrier 
protein (CCPI-G26) acts as a regulator and is essential in the PTS, 
which transfers sugar molecules across the cell membrane for energy. 
HPr is present in the cell in the phosphorylated (HPr-P) or non-
phosphorylated (HPr) form, depending on the presence or absence of a 
sugar substrate of the PTS [62,63]. Such sugars, when present, give rise 
to the dephospho form of the protein due to sugar phosphorylation, but 
when exogenous PTS sugars are absent, HPr-P should predominate. 
The concentration of the phosphorylated form of HPr decreases in the 
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presence of a PTS substrate [64,65]. Sugar ABC transporter permease 
(CCPI-G67) proteins enhance this by efficiently channeling nutrients 
across the bacterial membrane [Figure 5]. Together, these transporters 
maximize nutrient intake, helping C. chauvoei thrive in the host’s 
nutrient-rich but competitive environment.

The energy production of C. chauvoei depends on an array of proteins 
that work collectively to ensure efficient glucose utilization and other 
anaerobic metabolic pathways. The genes related to the fucose pathway, 
1,2-propanediol to propionate pathway, and DHAP to lactate pathway 
are identified in the study. The fucose pathway starts with fucose 
and ends with DHAP and L-acetaldehyde [Figure 6]. L-acetaldehyde 
enters the 1,2-propanediol to propionate pathway, whereas DHAP 
enters the glycolysis pathway. In the propanediol pathway, the enzyme 
phosphate propanoyl transferase (CCPI-G11) is identified in the 
study, and this enzyme catalyzes the reaction of propanoyl-CoA to 
propanoyl [Figures 6 and 7, Supplementary Figures 5-7]. The study 
identifies enzymes such as triosephosphate isomerase (CCPI-G45), 
type  I glyceraldehyde-3-phosphate dehydrogenase (CCPI-G47), 
phosphoglycerate kinase (CCPI-G46), and 2,3-bisphosphoglycerate-
independent phosphoglycerate mutase (CCPI-G44) in the glycolysis 
pathway. These enzymes catalyze the reactions from DHAP to lactate 
[Figure 6 and Supplementary Figures 8-12]. In addition, enzyme PEP 
phosphonomutase (CCPI-G54) catalyzes the conversion of PEP to 
phosphonopyruvate, and the enzyme phosphonopyruvate hydrolase 
catalyzes the conversion from phosphonopyruvate to pyruvate 
[Figure  6]. In contrast, the lactate utilization protein (CCPI-G80) 
enables C. chauvoei to metabolize lactate, a common byproduct in 
anaerobic environments within host tissue [Figure 7 and Supplementary 
Figure 13]. Anaerobic sulfite reductase subunits AsrA (CCPI-G69) and 
AsrB (CCPI-G70), alongside sulfite reductase subunit C (CCPI-G71), 
ensure energy production even under oxygen-limited conditions by 
reducing sulfite to a form usable as hydrogen sulfide in anaerobic 
respiration [66].

4.4. Genes for Acquiring Beneficial Genetic Traits and 
Maintaining Genomic Integrity
DNA replication and repair systems are critical as the infection 
progresses to ensure accurate replication and to counteract DNA 
damage from host immune defenses. Proteins such as replicative DNA 
helicase (CCPI-G35) facilitate DNA replication, ensuring continuous 
bacterial cell division and colony expansion. The recombinase 
RecA (CCPI-G23) plays an important role in DNA repair through 
homologous recombination, protecting the bacterium from genotoxic 
stress imposed by the host immune system [Supplementary Figure 14]. 
Exonuclease SbcCD subunit D (CCPI-G14) and AAA family ATPase 
(CCPI-G15) assist in repairing double-strand breaks in DNA and 
removing damaged nucleotides, respectively, maintaining genome 
integrity. Meanwhile, the YjjG family nucleotidase (CCPI-G77) helps 
to remove and recycle damaged or noncanonical pyrimidine bases, 
preserving DNA and RNA fidelity.

The genetic adaptability of  C. chauvoei is based on proteins that 
promote genome plasticity. The IS256 family transposase (CCPI-G12, 
G64) and the Rpn family recombination-promoting nuclease 
(CCPI-G2, G3, G5-7, G9) and tyrosine-type recombinase/integrase 
(CCPI-G29) enable horizontal gene transfer by allowing DNA 
segments to integrate into the genome. This capability may enhance 
virulence or antibiotic resistance, aiding survival under immune 
pressures. The DDE domain protein (CCPI-G50, G57, G72), DDE-
type integrase (CCPI-G66, G68), and other recombinases further 

promote genetic diversity, allowing the bacterium to adapt to varying 
conditions within the host and potentially evade immune responses.

During the above reactions or in the TCA cycle, electron transport, 
DNA repair; flavin adenine dinucleotide (FAD) exists in four redox 
states flavin-N(5)-oxide, hydroquinone, quinone, and semiquinone; 
and is converted between these states by accepting or donating 
electrons [67]. FAD (Quinone or oxidized form) accepts two electrons 
and two protons to become FADH2 (hydroquinone form). The oxidation 
of FADH2 or reduction of FAD by donating or accepting one electron 
and one proton, respectively, to form semiquinone (FADH·) [68].

4.5. Genes for Managing Stress Responses
The cell structure and membrane integrity of C. chauvoei rely on 
membrane-stabilizing proteins, which are vital as the bacterium 
proliferates. The genes coding for CDP-diacylglycerol-glycerol-3-
phosphate 3-phosphatidyl transferase, Class  B sortase, DegV family 
proteins, stage V sporulation protein S, pseudouridine synthase, and 
the 23S rRNA pseudouridine methyltransferase RlmH are known for 
managing stress responses. CDP-diacylglycerol-glycerol-3-phosphate 
3-phosphatidyl transferase (CCPI-G21) is involved in phospholipid 
biosynthesis, such as phosphatidylglycerol, the most abundant acidic 
phospholipid, which is essential in the outer membrane. The acidic 
phospholipids strengthen the cell membrane, providing more stability to 
bacterial cell walls. The mutants were able to grow at normal temperatures 
but showed slow growth at higher temperatures (>40°C) [69]. Thus, 
CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyl transferase is 
important in stabilizing the bacterial cell walls.

Class B sortase (CCPI-G58) aids by anchoring surface proteins to the 
bacterial cell wall, which may enhance adhesion to host tissues and 
provide a structural advantage. DegV family proteins (CCPI-G43) and 
stage V sporulation protein S (CCPI-G25) are involved in structural 
maintenance and sporulation, with the latter ensuring that some cells 
can form spores for persistence or future transmission.

Pseudouridine is a ubiquitous constituent of structural RNA (transfer, 
ribosomal, small nuclear (snRNA), and small nucleolar), and is the 
most abundant RNA modification [70]. Pseudouridine in rRNA 
and tRNA has been shown to stabilize and maintain structure and 
functions in mRNA decoding, ribosome assembly, processing, and 
translation [71]. Pseudouridine synthase (CCPI-G17) is an enzyme that 
modifies RNA by converting uridine to pseudouridine. The absence 
of pseudouridine synthase demonstrated temperature sensitivity and 
decreased virulence in Candida albicans [72]. Stem–loop 69 of 23S 
rRNA contains three highly conserved pseudouridines (C) at positions 
1911, 1915, and 1917, synthesized by the pseudouridine synthase 
RluD [73]. One of the pseudouridines in stem-loop 69 (position 
1915) is further methylated by RlmH to take part in the final steps 
of ribosome biosynthesis [74,75]. Cells lacking the rlmH gene have 
a clear growth disadvantage [76], and the methyltransferase confers a 
fitness advantage under stress conditions. Pseudouridine synthase and 
the 23S rRNA pseudouridine methyltransferase RlmH (CCPI-G78) 
modify RNA structures, potentially increasing the stability of ribosomal 
RNA and enhancing protein synthesis under stress. The Hsp20 family 
protein (CCPI-G79) acts as a molecular chaperone, protecting bacterial 
proteins from denaturation under heat or immune attack.

5. CONCLUSION

This study offers a comprehensive genomic analysis of C. chauvoei 
strain SBP 07/09, identifying eight PIs that play crucial roles in the 
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bacterium’s ability to cause blackleg disease in cattle. Advanced 
bioinformatic tools allowed for detailed functional prediction of genes, 
functions, and pathways within these PIs. The combinatorial use of this 
study linked the genomic islands or genes of the genomes to metabolic 
pathways, revealing critical insights into processes such as stress 
response, nutrient acquisition, and anaerobic survival. Key findings 
include the identification of genes associated with DNA recombination, 
glycolysis, and cellular membrane stability, which enhance the 
bacterium’s adaptability and virulence. The study underscores the 
importance of these genetic elements in facilitating C. chauvoei’s 
survival under anaerobic conditions typical of infected tissues, enabling 
efficient colonization and persistence. Future studies will include 
developing a bioinformatics method for linking the genomic islands of 
the genomes to the phenotypes via metabolic pathways and (2) using 
experimental validation strategies such as microarray studies to validate 
the proof of concept. Understanding these mechanisms provides a 
foundation for future research on developing vaccines or therapeutic 
targets of Clostridium species, leading to potential vaccines or drugs, 
ultimately helping to mitigate its economic impact on cattle farming.
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