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1. INTRODUCTION 
Approximately 20% of human cancers have been found to be 
associated with inflammation and connected to infection or infectious 
agents [1–3]. Various sexually transmitted infections (STIs), such as 
Herpes, gonorrhea, Trichomonas vaginalis, HPV, and EBV have been 
identified as contributors to both the initiation and progression of cancer 
[4–6]. Cancer, characterized by abnormal growth of cells, carries an 
increased risk influenced by multiple factors. Those factors include 
poor emotional and physical health, high-stress levels, environmental 
disparities, along with genetics, family history of cancer, and chronic 
inflammation due to various factors including STIs [7–10]. 

There has been evidence indicating that the presence of 
asymptomatic infection contributes to the development of cancers, 
primarily due to prolonged chronic inflammation [11,12]. This 
association has been observed to contribute to racial disparities in 
several cancers including lung, colorectal, liver, prostate, cervical, 
breast cancer, and so on [13–15]. Studies have demonstrated 
a significantly higher incidence of prostate cancer among men 
with a history of exposure to any sexually transmitted infections 
including gonorrhea, HPV and EBV [16–18]. For cervical cancer, 

the fourth most diagnosed cancer in female, HPV infection is 
one of the most important risk factors [19]. Additional evidence 
has revealed an association between HPV and EBV, which 
modify expression patterns in various cellular factors including 
inflammation, metastasis, and tumor progression, suggesting that 
coinfection contributes to human malignancies including cervical, 
nasopharyngeal, and prostate tumorigenesis [20–24]. HIV-1 virus 
has been linked to an increased risk of developing various types 
of cancer, primarily due to HIV-1-induced immune suppression 
[25–27]. For example research indicates that HIV-positive women 
face an elevated risk of contracting HPV infections and developing 
cervical cancer [28, 29].

These studies firmly assert that microbial infection plays a 
significant role in the susceptibility to carcinogenesis and cancer 
development. In resource-limited communities, infections account 
for nearly a quarter of all cancer cases, a significant and concerning 
statistic [30]. Rural communities face a disproportionately higher 
burden of STIs compared to their counterparts, particularly those 
with history of certain STIs, facing the higher incidence of cancers 
and are likely to have more advanced stage cancers compared to 
other groups [31–38]. Studies showed the prevalence of viral and 
bacterial infections such as T. vaginalis, HPV, gonorrhea as well 
as prostate inflammation, in African American men than in those 
of Caucasian men [2, 17, 18, 36–41]. Similarly, The association 
between HPV infection and cervical cancer is undeniable, with 
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Sexually transmitted infections are linked to increased risk of some cancers, with chronic inflammation and 
persistent infections accounting for roughly 20% of cancer cases worldwide. Early detection of these pathogens 
can help prevent cancer development or progression. This study focused on Human Immunodeficiency Virus-1, 
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specificity to their respective pathogenic RNA. We were able to detect as low as 4 RNA copies per reaction within 
a brief period of 25 minutes. LAMP amplifies a target nucleic acid sequence under isothermal conditions, requiring 
only basic equipment like a water bath or heating block. Our results show that LAMP’s simplicity and reliability 
make it ideal for point-of-need (PON) use, with its early detection of cancer-related pathogens offering significant 
potential for cancer prevention, public health education, and interventions.
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African American women being the most likely to die from cervical 
cancer among all women affected by this disease [42–45]. Evidence 
showed that chronic infections with these pathogens can lead to 
sustained inflammation, immune system modulation, and direct 
genetic damage, all of which can contribute to cancer development. 
This, in turn, plays a significant role in cancer stage at diagnosis and 
survival rates. These facts underscore the urgent necessity for the 
early detection of pathogenic triggers linked to cancer development, 
particularly within high-risk communities.

Presently, nucleic acid amplification-based detection methods 
such as conventional polymerase chain reaction/reverse 
transcription polymerase chain reaction (PCR/RT-PCR) are 
widely used and golden standard for diagnosis of infectious 
agents [46,47]. Although sensitive and reliable yet, the reliance 
on these methodologies involves expensive equipment, reagents, 
trained technicians, and sample transportation to the laboratories 
equipped with required instruments. This poses a significant 
challenge for rural, remote, and underserved communities, 
where access to laboratories and research infrastructure is often 
nonexistent. Consequently, there is an urgent need to develop a 
simple, single-step, ultrasensitive, and cost-effective DNA/RNA 
amplification-based assay technique, enabling the identification 
of potential pathogen sources swiftly, whether at the PON or out 
in the field. The isothermal nucleic acid amplification technique 
amplifies the DNA/RNA at a constant temperature thus eliminating 
the need of thermocycler [48]. Strand displacement amplification, 
nucleic acid sequence-based amplification, Helicase-dependent 
amplification, rolling circle amplification, multiple strand 
displacement amplification (MDA), transcription-mediated 
amplification, signal-mediated amplification of RNA technology, 
and loop-mediated isothermal amplification (LAMP) are some 
most frequently used isothermal nucleic acid amplification 
techniques use for the detection of the infectious agents [48–
52]. All these techniques have diverse methods of amplification 
and detections; therefore, different requirements, strengths, and 
weaknesses depending on the need. LAMP is a simple, highly 
sensitive, and cost-effective, nucleic acid amplification technique 
[53–56]. Due to its capability to rapidly produce large quantities 
of DNA/RNA and allow naked-eye visualization of the amplified 
product, this technology has become widely utilized for molecular 
pathogen detection [52,57–60]. Unlike PCR, it does not require 
thermocycling and reactions take place at a constant temperature 
(60°C–65°C) using standard displacement reaction [46]. LAMP 
uses six different primers to bind six regions of a target sequence, 
making this technique highly specific for the target sequence and 
eliminating the problem of non-target amplification, and taking as 
little as 30 minutes [53,61]. WarmStart RTx Reverse Transcriptase 
(New England Biolabs, UK) has combined reverse transcription 
(RT) and LAMP together in a single reaction making it possible 
to amplify RNA in one step [47,61], shortening the reaction time 
and allowing the rapid detection of pathogens. In addition, this 
technique is very simple, and its simplicity makes it practical to 
be used in remote communities, private clinics, and in the field to 
detect pathogens. In this work, we developed and standardized a 
simple colorimetric one-step LAMP assay for rapid detection of 
HIV-1, HPV-16, and EBV and analyzed them for their specificity 
and limit of detection. We designed custom primers targeting 
conserved regions of the respective pathogenic RNA to ensure 
high specificity and minimize the risk of cross-reactivity. Viral 
RNA amplification can be confirmed by visualizing a simple 
color change by the naked eye within as short as 25 minutes. This 
method can serve as a powerful detection tool for low-intensity 

infection due to its sensitivity and selectivity and helps cancer 
risk reduction and management.

2. MATERIALS AND METHODS

2.1. Virus Source
EBV Verification panel, HIV-1 verification panel, and the HPV 
Genotype 16 Verification Panel were from Exact Diagnostics. The 
verification panels (EBV and HIV-1) contain the heat-inactivated 
whole virus. The HPV Genotype 16 Verification Panel is formulated 
from human cell lines containing an integrated HPV virus.

2.2. RNA Extraction
Total RNAs were extracted from virus sources using TRI Reagent 
Solution, according to the manufacturer’s protocol {TRI Reagent® 
Solution Protocol (PN 9738M Rev D)}. The elution volume for RNA 
extraction was 22 µl.

2.3. LAMP Primer Design
Four different sets of primers were designed for each pathogen 
using LAMP Designer 1.15 (Premier Biosoft Primer Explorer V5 
software). Primer sets were selected based on the guidelines from “A 
Guide to LAMP Primer Design”. Each set of primers comprises the 
forward inner primer (FIP), backward inner primer (BIP), forward 
outer primer (F3), backward outer primer (B3), Loop-forward 
primer (LF), and loop-backward primer (LB). Designed primer sets 

Table 1. List of selected set of primers for each pathogen used in this study. 

Primer name Type Sequence (5’-3’) bp

HIV-GAG

FIP GGTCTCTTTTAACATTTGCATGGC-
TTTAAACACCATGCTAAACACA

46

BIP ATGAGGAAGCTGCAGAATGGG-
CCCTTGGTTCTCTCATCTG

40

F3 TCAGCATTATCAGAAGGAGC 20

B3 AGTTCCTGCTATGTCACTTC 20

LF TGCTTGATGTCCCCCCAC 18

LB CATGCAGGGCCTATTGCACC 20

HPV-L2

FIP ATTTGATCAGCAATAGTTTTGCCTT-
CATGCAAACAGGCAGGTA

43

BIP GGAAGTATGGGTGTATTTTTTGGTG-
ATATACCCAGTGCGTCCG

43

F3 AAAACGTGCATCGGCTAC 18

B3 GAGGCCTTGTTCCCAATG 18

LF CCTTAGGTATAATGTCAGGTGGACA 22

LB GGTTAGGAATTGGAACAGGGTC 25

EBV-BGLF

FIP AGACCGGGTCCCAGTCAACATC-
ATTGGAGGAGCACCTGGTAG

42

BIP CCGCATTTTCGCTTGGGTCC-
GTGGCAGACAGCCTAGCT

38

F3 GCGGACGTAGTCTCCAACA 19

B3 TGTCCGTAAGCGCAAACTG 19

LF CAATCCACGGCACAACTACTT 21

LB TAGACTCCACCCCCCTGT 18
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targeted the conserved genes of their respective pathogens. All the 
primer sets were evaluated for their ability to amplify the target 
RNA by LAMP. One set of primers for each pathogen was selected 
and used for further studies (Table 1). Depicts the sequences of 
selected primers set for HIV-1, EBV, and HPV-16. Primers were 
named based on the region of the genome in which sequences were 
derived. Primer sequences were blasted using BLAST: Basic Local 
Alignment Search Tool (nih.gov) to ensure specificity to its target 
pathogen. 

2.4. One-Step LAMP Reaction
LAMP reactions were prepared to amplify the target pathogenic 
RNAs. A 10X primer mix for each primer set was prepared beforehand 
to be used for LAMP reactions. LAMP reactions were carried out 

using WarmStartTM Colorimetric LAMP 2X Master Mix from New 
England Biolabs. A 20 µl reaction mixture (LAMP 2X Master Mix, 
10 µl; pathogen-specific primer mix, 2 µl; RNA target, 1 µl; DNase & 
RNase-free molecular grade water, 7 µl) was mixed and centrifuged 
for 1 s. LAMP was performed in a thermocycler at 65°C for 15–60 
minutes. To ensure the reliability of this assay, negative control 
reactions were prepared by replacing the target RNA with ultrapure 
water. Amplification can be directly detected by observing the color 
change with the naked eye, and gel electrophoresis was performed to 
confirm the result. All the LAMP experiments were carried out with a 
minimum of three replicates.

2.5. Gel Electrophoresis
LAMP reaction products were analyzed by using gel electrophoresis 
to confirm the presence of amplicons. Five microliters of amplified 
products were run in 1.5% agarose gel containing ethidium bromide, 
by using 1X TBE buffer at 100V for 30 minutes. The presence 
of amplicons was confirmed by visualizing the gel under a UV 
transilluminator system. 

2.6. Sensitivity and Specificity 
The selected primers were tested for both sensitivity in terms of 
time and copy numbers, and for specificity. The time sensitivity was 
determined by performing reactions at time intervals of 15, 25, 30, 
45, and 60 minutes. To determine the minimum copy number that can 
be identified by this assay, 10-fold serial dilutions of HIV-1, HPV-16, 
and EBV RNA templates ranging from 4 to 40,000 RNA copies per 
reaction were prepared. An aliquot of each dilution was used as an RNA 
template to perform the LAMP reaction for a total of 15–60 minutes. 
The specificity test was performed by using the RNA of non-target 
pathogens to determine that the assay specifically amplifies only their 
pathogen of interest. Each set of primers should only be able to amplify 
its target RNA; to test primer specificity we crossed each primer set 
with non-target RNA. In particular, HIV-1 and EBV RNAs were used 
as templates with HPV-L2 primer, while EBV and HPV-16 RNAs were 

Figure 1. Pathogen specific LAMP primer screening. LAMP primers designed 
for HIV-1, EBV, and HPV-16 pathogens were screened to test sucessful 

amplification of their respective target pathogens. Pink color indicates no 
amplification and yellow color indicates sucessful amplification. A. HIV-

GAG primer amplified target HIV-1 RNA. B. EBV-BGLF primer amplified 
target EBV RNA. C. HPV-L2 primer amplified target HPV-16 RNA. Negative 

Control (NC) for all three reactions stayed pink indicating no reaction.

Figure 2. Reaction time optimization for LAMP assay. A. To determine the time sensitivity of selected primers 
LAMP reactions were carried out at different time intervals from 15 to 60 minutes. The shortest time of detection. was 
recorded at 25minutes for all three HIV1-GAG, EBV-BGLF, and HPV-16 L2 primer sets. B. Gel electrophoresis results 

corresponded with colorimetric color detection results. Pink color reaction and absence of bands in gel of Negative 
control reactions (NC) indicate no reactivity.
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Figure 3. Lowest limit of RNA copy number detection by LAMP. A. RNA detection limit of each primer 
set was examined by using 10-fold serial dilution of their respective pathogenic RNA ranging from 40,000 

to 4 RNA copies per reaction. Each primer set was able detect as low as 4 RNA copy number reaction 
by visual color change to yellow. B. Results of gel electrophoresis correlate with colorimetric results. No 

reaction observed in negative control reactions (pink color, and no band in gel).

Figure 4. Cross reactivity assay to determine the specificity of LAMP primers. Specificity of each primer set was tested by cross reacting 
the primer sets with non-target RNAs as template. Every positive control (PC) has primer and it’s respective target RNAs in reaction. 
Target RNAs were replaced by the distilled water in each negative control (NC) reaction. A. HIV-1 specific Gag primer cross-checked 
with EBV, and HPV-16 non-target RNAs. B. EBV specific BGLF primer cross-checked with HPV-16, and HIV-1 non-target RNAs. C. 

HPV 16 specific L2 primer cross-checked with EBP, and HIV1 non-target RNAs. No cross reactivity was observed with any primer set. 
Each primer set demonstrated 100% specificity to their respective target RNAs. Positive controls showed amplification (yellow color) 

and no reaction was observed in negative controls (pink color).



Sharma et al.: LAMP for molecular detection of cancer related pathogens 2025;13(6):171-178 175

used as templates with HIV-GAG primer, and HIV-1 and HPV-16 RNAs 
were used as templates with EBV-BGLF primer. The LAMP reactions 
were run for a total of 15–60 minutes, followed by gel electrophoresis.

3. RESULTS

3.1. Screening of LAMP Primers for Each Pathogen
Four different sets of LAMP primers for HIV-1, HPV-16, and EBV 
targeting the conserved genes of each pathogenic RNA, respectively, 
were designed using Primer Explorer V5 software. Each set has six 
primers FIP, BIP, F3, B3, LF, and LB. To determine the ability of each 
set of primers to successfully amplify their target RNA, the LAMP 
reaction was carried out with the use of colorimetric pH-sensitive 
detection dye. Results demonstrated that HIV-GAG (Fig. 1A left 
panel), EBV-BGLF (Fig. 1B left panel), and HPV-L2 (Fig. 1C left 
panel) successfully amplified their target RNA by LAMP reaction. 
Each reaction was carried out with three replicates and results 
were consistent showcasing the efficacy of these set of primers in 
amplification of their target RNA. Therefore, HIV-GAG, EBV-
BGLF, and HPV-L2 primer sets were selected as optimal primers for 
detecting HIV-1, EBV, and HPV-16 viruses, respectively, and used 
for further studies. No amplification was detected in any negative 
control sample using any primer set (Fig. 1 A–C, right panels). The 
color change was noted with the naked eyes, positive samples turned 
pink to yellow while negative samples with no template remained 
pink in color.

3.2. Sensitivity of LAMP Assay
The selected LAMP primer sets were next tested to determine the 
lowest time limit of detection and the minimum copy number of RNA 
detectable under the reaction conditions described previously in section 
2.6. To determine the earliest time point of detection, amplification 
reactions were carried out in triplicate at various time intervals from 
15 to 60 minutes. As shown in Fig 2. A. all three primers HIV-GAG, 
HPV-L2, and EBV-BGLF primer were able to detect their respective 
RNAs within 25 minutes. The colorimetric result corresponds to 
the gel electrophoresis. Positive reactions with amplified product 
produced many bands of different sizes, similar to a typical ladder-like 
pattern on a 1.5% agarose gel, whereas no bands were observed from 
negative control reactions (Fig. 2B).

The sensitivity of the assay in terms of RNA copy number was 
analyzed using 10-fold serial dilutions ranging from 40,000–4 RNA 
copies per reaction in triplicates. As shown in Figure 3A the detection 
limit for all three primers HIV-GAG, EBV-BGLF, and HPV-L2 was 
as low as 4 RNA copies per reaction. The colorimetric color change 
(Fig. 3A) readings were in complete accordance with the results of gel 
electrophoresis (Fig.3B). 

3.3. Specificity of Pathogen-Specific LAMP Primers
To evaluate the pathogenic specificities of each primer, cross 
reaction assays with non-target RNAs as templates were 
performed. HIV-GAG primer was cross tested with HPV-16 and 
EBV RNAs, EBV-BGLF primers were cross tested with HIV-1 and 
HPV-16 RNAs, and HPV-L2 primer was cross tested with HIV-
1 and EBV RNAs. Results revealed that all three primers HIV-
GAG (Fig. 4A, left panel), EBV-BGLF (Fig. 4B, left panel), and 
HPV-L2 (Fig. 4C, left panel) are highly specific and only produced 
the amplicons when reacted with their respective pathogenic RNA. 
No cross reactivity was observed with non-target RNA templates 
(Fig. 4A–C, left panel). Indicating that HIV- GAG, HPV- L2, and 

EBV- BGLF primers are specific only to HIV-1, HPV-16, and EBV 
sequences, respectively. The same results were observed with all 
triplicate and gel electrophoresis results corresponding with color 
changes (Fig. 4A–C, right panels). 

4. DISCUSSION
The early detection and timely identification of cancer-related 
pathogens such as HPV, EBV, and HIV can play a crucial role in 
understanding and managing illnesses, especially in asymptomatic 
patients. For rapid detection of viral infections directly from the 
source, PCR/RT-PCR and immunoassay methods are among the 
most popular approaches today [62]. PCR/RT-PCR is typically 
highly sensitive but can be expensive, time-consuming, and require 
costly thermocyclers and trained personnel to operate [63]. On 
the other hand, immunoassay-based detection is cheaper, more 
robust, and accessible to untrained users. However, antibody-based 
detection does not achieve the same level of sensitivity as nucleic 
acid amplification methods [63,64]. When choosing a method 
for pathogen detection, it is crucial to consider several factors, 
including whether the assay is intended for laboratory-based use 
or point-of-care (POC)/PON testing, the urgency of the diagnosis, 
and the associated costs. A POC test is conducted at or near the 
location where a patient first engages with the healthcare system. It 
offers rapid turnaround times and delivers reliable information that 
can be used to develop patient management plans. The immediacy 
of PON testing and the swift receipt of results reduce the need for 
multiple patient visits and enable timely treatment. In this study, a 
simple, rapid, and sensitive nucleic acid amplification-based assay 
was developed to detect three cancer-related pathogen HPV-16, 
EBV, and HIV-1 by using one-step LAMP colorimetric method. 
Four different sets of primers were designed for each pathogen 
and after screening HIV-GAG, EBV-BGLF, and HPV-L2 primer 
sets targeting HIV-1, EBV, and HPV-16 viruses, respectively, 
were selected. In consideration of the specificity and accuracy 
of pathogen detection, the assay was developed to specifically 
amplify a consered region of each pathogenic RNA and results 
were monitored by visual inspection of color change from pink to 
yellow. All positive samples identified by color change were also 
detected by gel electrophoresis. The result of gel electrophoresis 
was in complete accordance with visual color change detection. It 
eliminates the need of postamplification procedures like ethidium 
bromide staining and gel electrophoresis saving time, reducing the 
need of trained people, and making it suitable for PON use. 

The LAMP assay exhibited a noteworthy amplification sensitivity 
both in terms of time and template copy number. All three 
pathogenic RNAs were amplified within 25 minutes by LAMP assay 
(Fig. 2). The LAMP assay successfully detected 4 RNA copies per 
reaction for all three pathogens HIV-1, EBV, and HPV-16 (Fig. 3) 
proving the high sensitivity of this method and making it possible 
to detect low concentration of pathogen present in the earlier 
stage of infections. Cross reactions with non-target RNAs were 
performed to further confirm the specificity of HIV-GAG, EBV-
BGLF, and HPV-L2 primer sets. No false positive reactions were 
observed and none of the primers showed any cross reactivity with 
non-target RNAs (Fig. 4). These results demonstrated that all three 
primers showed 100% specificity and only amplified their target 
RNA. The 100% specificity of these primers presents a promising 
opportunity to develop a multiplex detection assay based on LAMP. 
This assay would enable the simultaneous detection of all three 
target pathogens by introducing distinct sets of primers to amplify 
specific DNA/RNA regions within a single reaction. We have 



Sharma et al.: Journal of Applied Biology & Biotechnology 2025;13(6):171-178176

developed a test for three cancer-related pathogens, highlighting 
the promising potential of the LAMP assay in clinically diagnosing 
various cancer-associated pathogens. Nonetheless, the reliability 
of this assay warrants additional scrutiny through comprehensive 
testing using a large-scale clinical sample pool. LAMP can be 
designed for multiplexing, enabling the simultaneous detection of 
multiple pathogens. The comparison of pathogen detection methods 
highlights the distinct advantages and limitations of each approach. 
Most used traditional PCR/Real-time PCR requires 2–4 hours to 
deliver results, incurs a cost of approximately $5–$10 per reaction, 
and requires an expensive thermocycler ($3,000–$25,000). Antigen–
antibody detection methods, such as ELISA or lateral flow assays, 
provide results from 15 minutes to 2 hours at a lower cost of $1–
$5 per reaction. However, these methods often lack the sensitivity 
required to detect low pathogen concentrations. In contrast, the 
LAMP assay is highly sensitive, and offers a rapid result within 
25–30 minutes at a cost of $1–$2 per reaction, making it particularly 
suitable for PON testing and resource-limited settings. LAMP could 
serve as a powerful detection tool for low-intensity infection due 
to its sensitivity and selectivity and help cancer risk management 
and STI treatment decisions. Rural communities would benefit from 
this highly sensitive diagnostic to inform the timely treatment of 
infectious or even chronic diseases. 

5. CONCLUSION
In conclusion, this study successfully developed a one-step 
colorimetric LAMP assay for the rapid and precise detection of HIV-
1, HPV-16, and EBV. The assay exhibits outstanding sensitivity, 
enabling the identification of even minimal traces of these 
pathogens. Furthermore, it holds great potential for simultaneous 
and multiplexed detection of multiple human pathogens in a high-
throughput format, ensuring highly accurate results even at very low 
pathogen concentrations.
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