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ABSTRACT

Glycogen phosphorylase (GP) is a rate-limiting allosteric enzyme in the glycogenolysis pathway that contributes to 
hyperglycemia in type 2 diabetes (T2D). Hence, researchers consider GP a validated target to treat T2D. Commercial 
antidiabetic drugs are effective but have undesirable effects. Our search for a safer drug led us to investigate a 
potential GP inhibitor that could modulate blood glucose levels with minimal or no side effects. Herein, we report 
seven structural analogs of the reference compound N-acetyl-beta-D-glucopyranosyl amine (NBG) (analog of 
D-glucose) targeting the active site of human liver GPa (PDB ID: 1FC0). In silico molecular docking studies were 
conducted to predict GPa-ligand interactions. We analyzed drug-likeness and absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) parameters using AutoDock 4.2, Discovery Studio, SwissADME, ProTox-II, and 
ADMETlab web tools. Among all compounds, befunolol (−8.83 kcal/mol) exhibited the highest affinity than NBG 
(−6.20 kcal/mol) for the binding pocket of GPa and inferred a good pharmacokinetic profile. Toxicological endpoint 
prediction analysis showed befunolol as a non-hERG blocker and non-carcinogenic with a drug score (0.95) higher 
than NBG (0.30) and an LD50 value of 922 mg/kg. A molecular dynamics simulation of befunolol and NBG for 
100 ns using Schrödinger software revealed the stability of protein-ligand complexes. Overall, our findings suggest 
that befunolol could represent a potential therapeutic drug candidate worth exploring in cell-based and pre-clinical 
studies.

1. INTRODUCTION

Glycogen phosphorylase (GP), an essential homodimer enzyme, 
is responsible for maintaining glucose homeostasis and hepatic 
glycogen levels. GP is now seen as an efficient target for allosteric 
regulation by pharmacological agents as it contains multiple potential 
effector binding sites, which can be exploited to design innovative GP 
inhibitors [1]. The active or catalytic site is positioned in the middle 
of each monomer, accompanied by the pyridoxal-5’-phosphate (PLP) 
coenzyme. It forms a bond with glycogen, glucose-1-phosphate, 
glucose, and an effective glucose analog inhibitor known as N-acetyl-
beta-D-glucopyranosyl amine (NBG). Molecular docking studies 
have demonstrated that a few flavonoids and NBG analogs possess 
a strong affinity for binding to the active site [2,3]. The exposure 
or occlusion of the catalytic site and enzyme activity depend on the 
structural transition of human liver GP (HLGPa) in its active and 
inactive conformations. HLGPa complexed with AMP denotes the 
active conformation (R state), whereas HLGPa complexed with the 
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potent glucose analog inhibitor NBG denotes the enzyme’s inactive 
conformation (T state).

The 280s loop in the active site of GPa plays a prominent role in 
regulating the binding of the substrate and inhibitor. The concerted 
movement of loops at the domain interface regulates the substrate’s 
access to the catalytic site. On inhibitor binding to the active site, 
the 280s loop/gate (residues 282–287) between α helix 7 (residues 
261–274) and α helix 8 (residues 289–314) remains closed and 
stabilized [3]. Hence, the substrate glycogen’s access to the catalytic 
site is blocked, which favors the T-state conformation of the enzyme. 
When transitioning takes place from the T state to the R state, the gate 
residues become disarranged, unfolding the channel and displacing 
Asp283 with Arg569 at the catalytic site. This opening of the gate 
or active site crevice recreates the recognition site and allows direct 
access of glucose and phosphate substrates to the catalytic site, thereby 
promoting a suitable electrostatic environment for the essential 
cofactor PLP [3].

The glycogen storage site lies on the protein surface and allows the 
binding of oligosaccharides and glycogen. Compounds such as 
cyclodextrins and maltopentaose are known to bind at the glycogen 
storage site [3]. The novel allosteric site situated at the dimer interface 
accommodates the effective antidiabetic drug CP320626 [3]. The 
allosteric or AMP binding site is situated at the dimeric interface, 
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approximately 30 Å away from the catalytic site. It accommodates 
AMP, adenosine triphosphate (ATP), inosine monophosphate (IMP), 
and glucose-6-phosphate. Acyl ureas have been identified as a new 
class of AMP site inhibitors of HLGPa using structure-based design 
approaches combined with pharmacophore and 3D QSAR models [4]. 
The inhibitor or purine binding site is located on the enzyme surface 
and joined to the catalytic site through a 12 Å channel. It binds 
purine analogs such as caffeine, nucleosides (adenosine and inosine), 
nucleotides (AMP, IMP), ATP, flavin mononucleotide, and NADH. 
Flavin compounds such as riboflavin display the highest affinity 
by interacting with a portion of the adjacent hydrophobic surface. 
Flavopiridol binds to the inhibitor site in the muscle GPa (mGP) and 
GPb, but the liver GPa (lGP) shows extreme selectivity for inhibitors [5]. 
These binding sites provide an opportunity to design a benign drug to 
alleviate the effects of GP and attain glucose homeostasis.

In mammals, the three GP isozymes are predominantly expressed in 
the brain (bGP), skeletal muscle (mGP), and liver (lGP). Furthermore, 
these GP isoforms share nearly 80% amino acid sequence identity 
and almost 100% homology at the catalytic site. Hence, finding more 
specific and effective inhibitors targeting the catalytic site of lGP 
remains a crucial subject of research [6]. The present study focuses 
on the exploration of new inhibitors for the active site of HLGPa, 
which may have the potential to lower the glucose output in the liver. 
Computer-aided drug discovery has emerged as the most rapid, cost-
effective, and reliable approach to identifying safe and efficacious 
antidiabetic drug candidates. We used GPa to dock structural analogs 
of NBG and computationally predetermined a pool of absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) properties 
in this study. The corresponding docked results were visualized 
using Discovery Studio. A second-step analysis was done by 100 ns 
molecular dynamics (MD) simulations for the best docked compound 
and the standard NBG to observe the stable interactions of the protein-
ligand complexes. This study aimed to examine the affinity of selected 
ligands and their intermolecular interactions at the active site of 
HLGPa. Our current in silico approach reports befunolol as a safe 
agent that can be additionally reviewed for the in vitro and in vivo 
antidiabetic activity of GP against type 2 diabetes (T2D).

2. MATERIALS AND METHODS

2.1. Software
We initiated our study with the support of the software detailed in 
this paper. The 3D structure of HLGPa was retrieved from the RCSB 
PDB database (https://www.rcsb.org/structure/1FC0). NBG structural 
analogs were downloaded from PubChem (https://pubchem.ncbi.
nlm.nih.gov) and ZINC (https://zinc.docking.org/substances/home/) 
databases. The docked protein-ligand complexes were created, and 
their docking poses were analyzed using AutoDock4.2 (MGL Tools 
version  1.5.6) (https://autodock.scripps.edu/download-autodock4/). 
Open Babel (https://github.com/openbabel/openbabel/releases/tag/
openbabel-3-1-1) was used to convert the chemical file formats 
of the ligands from sdf format to pdb format. Web servers such as 
SwissADME (http://www.swissadme.ch/), ADMETlab2.0 (https://
admetmesh.scbdd.com/), PreADMET (https://preadmet.webservice.
bmdrc.org/), and ProTox-II (https://tox-new.charite.de/protox_II/) were 
used for ADMET profiling [7-9]. BIOVIA Discovery Studio visualizer 
v21.1.0.20298 (https://discover.3ds.com/discovery-studio-visualizer-
download) and ADT4.2 software were used for 2D and 3D visualization 
of the best docking poses of protein-ligand complexes as well as their 
intermolecular interactions. MD simulations of the docked complexes 
were performed using Schrödinger Maestro 13.3 software.

2.2. Ligands Selection
Seven ligands based on their structural similarity to the reference 
compound NBG were chosen: Befunolol, Pivaloyl-D-galactosylamine, 
Acifran, Benmoxin, Ciclazindol, Amixetrine, and Carpindolol.

2.3. Molecular Docking
The X-ray crystallographic structure of the inactivated form of HLGPa 
(PDB ID: 1FC0) was downloaded from the RCSB PDB in PDB format 
with a resolution of 2.40 Å [10]. We executed the entire molecular 
docking experiment using the ADT4.2 software suite. As GP is a 
homodimer, only the monomer (chain A) was considered for the 
docking study, and the other chain was deleted in the initial step. The 
heteroatoms and occasional water molecules were deleted from the 
protein’s crystal structure for further analysis. Essential polar hydrogen 
atoms and Kollman charges were added to the protein, and Gasteiger 
charges were computed for the selected ligand atoms. A grid box was 
generated to dock the ligand at the active site of the target GPa. The 
docking parameters were set by increasing the number of GA runs 
to 100 and the population size to 300. The 2D and 3D visualization 
and analysis of the docked protein-ligand complexes were carried out 
using Discovery Studio.

2.4. ADMET Profiling
Physicochemical parameters like molecular weight (MW), topological 
polar surface area (TPSA), molar refractivity (MR), number of 
hydrogen bond donors (nHBD), number of hydrogen bond acceptors 
(nHBA), LogS, LogD, and LogP were calculated on the ADMETlab 
predictor. The pharmacokinetic parameters such as blood–brain barrier 
(BBB) permeation, gastrointestinal (GI) absorption, cytochrome 
P450 (CYP450) enzyme inhibition, plasma glycoprotein (Pgp) 
substrate, Pgp inhibitor, skin permeation (LogKp), and drug-likeness 
were assessed using the SwissADME tool. Other parameters like 
hepatotoxicity, carcinogenicity, immunotoxicity, Ames mutagenicity, 
cytotoxicity, hERG blockers, lethal dose (LD50), and acute toxicity 
class were predicted using the ProTox-II server to estimate the toxicity 
profile of the selected ligands [11]. Molecular properties analyzed with 
these web tools were used to select the best drug candidate from the 
seven compounds.

2.5. MD Simulations
To further validate the best configurations obtained from AutoDock 
results, we used Schrödinger’s Glide and Prime molecular mechanics 
generalized bound and surface area (MMGBSA) to redock and predict 
the binding energy of all compounds. The MD simulations were run 
with a duration of 100 ns for both candidate compounds and standard 
compounds using the Desmond module from Schrödinger Maestro 
13.3 software. The root mean square deviation (RMSD) and root mean 
square fluctuation (RMSF) figures quantified the binding stability of 
the proposed ligand-protein complexes.

3. RESULTS AND DISCUSSION

3.1. Molecular Docking Analysis
Binding energy is evaluated through docking and is considered a 
primary parameter for assessing ligand-protein affinity. Binding energy 
and ligand affinity are inversely related to each other. A low binding 
energy signifies a good affinity of the ligand for the protein, making 
it a desirable drug candidate for further investigation. Table 1 details 
the binding energies and intermolecular interactions between the test 
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ligands, NBG, and the target GPa. In our current findings, befunolol 
displayed the lowest binding energy of −8.83 kcal/mol, creating a 
strong fit with GP and a stable inhibitor-protein complex compared to 
NBG (−6.20 kcal/mol). Other test ligands had higher docking scores 
than NBG, except for pivaloyl-D-galactosylamine [Table 1]. Befunolol 
showed molecular interactions with Leu494, Lys544, Glu654, Lys655, 
and Pro658 [Figure 1a] in the active site of GP. The bioavailability 
score describes the permeability and bioavailability of a drug 
molecule [12]. Both befunolol and NBG were within the acceptable 
range of 0.55 [Table 1], which is a good indicator of an active drug. 
Figure 1a and b display befunolol-GPa and NBG-GPa complexes in 
2D and 3D, respectively. Figure S1 illustrates the interactions of GPa 
with other molecules.

3.2. ADMET Analysis
3.2.1. Physicochemical properties
We noticed that all the molecules satisfied Lipinski’s rule of five 
(RO5) [13], demonstrating their drug-like nature and oral bioavailability. 
It is suggested that any violation of RO5 could result in poor absorption 

or low permeability of the molecule [14]. Befunolol was found to obey 
all parameters of Lipinski’s rule: MW of 291.34 Da, 5 HBA, and 2 HBD 
[Table S1]. The MLogP value for befunolol was 0.50, suggesting good 
oral and intestinal absorption compared to NBG (−2.61) [Table S1].

The MW and TPSA of a molecule strongly influence its ability to 
permeate through the biological barrier. This permeability decreases 
with an increase in MW and TPSA. All the test ligands had a low MW 
[Table S1], which enhances the rate of absorption in the body. It has been 
reported that a molecule with a TPSA >140 Å results in poor absorption, 
while those with a TPSA of 60 Å results in good absorption [15]. We 
observed that befunolol showed 71.70 Å TPSA and 84.26% Abs, 
whereas NBG showed 119.25 Å TPSA and 67.85% Abs [Table S1]. The 
lower the LogS value, the higher the solubility, which increases the rate 
of absorption. For befunolol, the calculated results of LogS (−2.922) 
and LogD (2.377) suggested moderate solubility and good distribution 
of the compound [Table S1]. NBG and pivaloyl-d-galactosylamine had 
poor LogD values (−1.708 and −1.056, respectively), probably due to 
fewer functional groups [Table S1].

Table 1: Binding energies of the test ligands docked with HLGPa predicted by Autodock and Prime MMGBSA.

Molecule Binding energy (kcal/mol) Residual amino acid interactions Bioavailability Drug score

Autodock Prime MMGBSA

NBG −6.20 −31.779798 Leu136, Asn284, His377, Glu672, Ser674, Gly675 0.55 0.30

Befunolol −8.83 −40.74846323 Leu494, Lys544, Glu654, Lys655, Pro658 0.55 0.95

Ciclazindol −8.73 −20.8015797 Val567, Lys568, Arg569, Tyr648, Thr676, Lys680, Phe681 0.55 0.91

Carpindolol −8.05 −36.10973782 Gly135, Leu136, Asn284, His341, His377, Ala383, Lys574, 
Thr676

0.55 0.90

Benmoxin −7.89 −24.4503342 Glu88, Leu136, Asn282, Asp283, Phe285, Arg292, His341 0.55 0.74

Acifran −7.33 −1.046325638 Lys568, Lys574, Tyr648, Glu672, Thr676, Gly677, Lys680 0.85 0.61

Amixetrine −7.26 −29.92297481 Leu136, Phe285, Arg292, His341 0.55 0.70

Pivaloyl‑D Galactosylamine −5.90 −21.3258291 Gln96, Glu120, Leu494, Cys495, Asn541, Lys544, Pro658, 
Ala659

0.55 0.29

HLGPa: Human liver GP, MMGBSA: Molecular mechanics generalized born and surface area, NBG: N‑acetyl‑beta‑D‑glucopyranosyl amine.

Figure 1: Post docking analysis visualized in 2D and 3D animated poses representing ligand-protein interactions, and Hydrogen bond surface that forms the 
binding pocket for Befunolol and N-acetyl-beta-D-glucopyranosyl amine (NBG) (a) Befunolol and GP complex (b) NBG and GP complex

a

b

and
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3.2.2. Drug metabolism and pharmacokinetics studies
Befunolol was predicted to have moderate Caco-2 permeability 
(−4.95 log cm/s) [Table S2]. Interestingly, befunolol may not act as 
a drug transporter of the Pgp substrate, suggesting that there is no 
drug-drug interaction, while NBG acts as a drug transporter of the 
Pgp substrate [Table S2], which could cause a pharmacokinetic drug-
drug interaction, triggering unwanted side effects or toxicity due to 
accumulation and lower clearance (CL) [16]. The half-life (T1/2) and 
CL of befunolol were positive compared to NBG [Table S2]. Human 
intestinal absorption (HIA) reveals the pathway of orally administered 
drug molecules from the intestine into the bloodstream. The efficacy 
of drug molecules relies on their T1/2, which reflects the effective 
dose. The predicted HIA value of befunolol (0.029) showed good 
absorption and could be considered an effective and promising drug 
candidate [Table S2]. The distribution of molecules was analyzed 
for plasma protein binding (PPB) and BBB permeability parameters. 
Befunolol could permeate the BBB to reach the molecular targets 
in the central nervous system, and the PPB value was found to be 
75.32% [Table S2], indicating a high pharmacological effect that could 
contribute to its ability to work as a drug.

CYP450 family enzymes are important determinants of toxicity and 
therapeutic efficacy [17]. The molecules or drugs enter the circulation, 
undergo degradation by these enzymes in the liver, and are excreted via 
urination. Inhibiting these enzymes results in abnormal biodegradation 
of the drug molecule, as CYP450 enzymes play a crucial role in 
detoxification [18]. Befunolol was predicted to be a non-inhibitor of 
the CYP450 enzyme [Table S3] and also indicated low permeability to 
the skin (LogKp of −6.64 cm/s) [Table S3].

3.2.3. Toxicity analysis
The ability to possess non-toxic effects is the main factor in choosing 
a therapeutic candidate molecule [19]. ProTox-II toxicity predictions 
showed all molecules to be non-mutagenic, non-cytotoxic, and non-
immunotoxic [Table S4], thereby considering them non-fatal. Only 
benmoxin showed carcinogenicity and hepatotoxicity [Table S4]. 

Based on acute toxicity, these compounds were categorized into six 
classes: class  I and II, which are fatal if consumed; class  III, which 
is toxic if consumed; class IV, which is harmful if consumed; class V, 
which is perhaps harmful if consumed; and class VI, which is non-
toxic. The median lethal dose (LD50) values were computed in the 
range of 159–14388 mg/kg [Table S4]. Befunolol was confirmed to 
be a non-hERG blocker [Table S4], as blocking of hERG (the K+ 
channel responsible for the correct rhythm of the heart) signaling leads 
to cardiac arrest.

3.3. MD Simulation Studies
Of all the compounds tested, befunolol displayed the strongest affinity 
for HLGPa (−40.74 kcal/mol), as predicted by Prime MMGBSA 
[Table 1]. Furthermore, we used a 100 ns MD simulation to examine 
the binding stability and intermolecular interactions of the topmost 
compound (Befunolol-HLGPa) and the standard (NBG-HLGPa). The 
simulation results of these docked complexes were described with 
RMSD, RMSF, and protein-ligand contacts.

3.3.1. RMSD and RMSF analysis
RMSD and RMSF provide insight into the conformational changes, 
dynamic fluctuations, and stabilization of the selected protein-ligand 
complexes throughout the MD simulation event compared to the 
unbound protein structure. RMSD plots of the docked complexes 
are depicted in Figure  2a and b. The protein backbone fluctuations 
in response to NBG binding are displayed in the region of 2.1–2.8 Å 
during the 20–100 ns interval [Figure 2a]. As shown in Figure 2b, the 
protein initially showed fluctuations at around 2.2–2.8 Å during 5–42 
ns in response to befunolol binding. Thereafter, the complex stability 
of befunolol-HLGPa was sustained for around 55–85 ns [Figure 2b], 
with minimal fluctuations after the 85 ns simulation period. The RMSF 
graph depicts the intermolecular interactions of the ligands NBG and 
befunolol with the target protein [Figure 2c and d]. Protein RMSF peaks 
represent fluctuations in protein residues during the simulation process. 
The docked complexes show low fluctuations (small peaks) due to 

Figure 2: Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) graphs of the protein-ligand complex during 100 ns molecular dynamics 
simulation. (a) RMSD of protein and N-acetyl-beta-D-glucopyranosyl amine (NBG) (b) RMSD of protein and befunolol. (c) Protein RMSF plot in response 
to NBG binding (d) Protein RMSF plot in response to befunolol binding. Protein is shown in green color and ligand in pink color. Red and blue backgrounds 
represent the alpha-helical and beta-strand regions respectively. The protein residues that interact with the ligand are marked with green-colored vertical bars.
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ligand interactions with the protein structure. Two large peaks with 
RMSF values of >4.5 Å and 4.2 Å are seen in the NBG-bound protein 
[Figure 2c]. Three large peaks at 3.7 Å, >4.5 Å, and 4.2 Å are observed 
in the protein complexed with befunolol [Figure  2d], indicating no 
ligand-binding residues in these regions of the protein backbone.

3.3.2. Protein-ligand contacts
The bar charts in Figure  3a and b reveal favorable protein-ligand 

water bridges within the binding pocket. Befunolol exhibited varied 
interactions with the protein compared with NBG. Moreover, the 
residual interactions that remained for more than 30% of the simulation 
time throughout the MD trajectory are shown in Figure 3c and d.

4. CONCLUSION

GP has turned out to be a justified target to modulate the blood glucose 
levels in T2D. The active site of the enzyme GPa accommodates 
analogs of D-glucose, such as NBG. This in silico docking study 
found befunolol to have the highest binding affinity and best drug 
score. ADME analysis and toxicity profiling showed that befunolol 
is a safe drug with no toxicity warnings. Further validation by MD 
analysis revealed more stable interactions between befunolol and 
protein structure. Befunolol produced more effective results than NBG 
in our study, making it a potential inhibitor targeting GPa and a better 
antidiabetic lead compound. Moreover, in vitro and in vivo studies must 
be conducted to validate befunolol’s effectiveness in treating T2D.
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