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ABSTRACT

Globalization has led to an increase in the global population and drug resistance, necessitating the development of 
novel pharmaceuticals. Fungi represent a promising source for new drugs, producing a diverse array of secondary 
metabolites, some of which are integral to clinically essential drugs. This study aimed to determine the optimal 
conditions for enhancing metabolite production by the Indonesian fungal strain Aspergillus tamarii (IPBCC 880066) 
when cultivated on solid media, specifically rice bran and wheat. The optimal fermentation conditions, including 
moisture content, growth temperature, and incubation duration, were determined based on the number of spots 
observed on thin-layer chromatography plates. Results indicated that the optimum conditions for metabolite 
production were a 40% moisture content, a growth temperature of 25°C, and a 14-day incubation period. Subsequent 
UPLC-MS/MS analysis identified 22 metabolites produced by A. tamarii on rice bran and 20 metabolites on wheat. 
Notably, two compounds, N-(2-hydroxypropyl)-2-methylacrylamide and N6-[(benzyloxy)carbonyl]-L-lysine, were 
detected in both rice bran and wheat fermented by A. tamarii. Some of the identified metabolites have the potential 
to be applied in the pharmaceutical industry. In conclusion, our study emphasizes A. tamarii’s efficacy in diverse 
metabolite production under optimized conditions, providing valuable insights for maximizing fungal metabolite 
production in potential pharmaceutical applications.

1. INTRODUCTION

Developing new drugs is essential to address challenges arising from 
the increase in the world population and drug resistance. Overusing 
existing medications and evolving pathogens contribute to the 
complexities of drug resistance. Currently, only a limited number of 
natural products, some of which are chemically related, are employed 
in medicine [1]. While natural products contribute significantly, with 
27% of synthetic drugs approved in clinics [2], exploring diverse 
natural sources is crucial for discovering new compounds to combat 
drug-resistant strains and enhance treatment options.

Fungi, with their extensive biodiversity, offer a promising avenue for 
exploration. Despite the dominance of clinically essential drugs such 
as penicillins, cephalosporins, and beta-lactam antibiotics produced 
by fungi, manufacturing bioactive compounds from fungi still needs 
to be explored. This underutilization is surprising given the vast 
biodiversity of fungi, which has the potential to yield new bioactive 
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compounds. Recent times have identified several new metabolites 
from fungi, highlighting the untapped potential for discovering novel 
compounds [1].

Aspergillus tamarii is one of the fungi that has been known to produce 
several secondary metabolites. It has demonstrated the synthesis of 
various bioactive compounds, including antibacterial agents (indole 
alkaloids), anti-inflammatory compounds (dipyrrolobenzoquinone), 
cyclic peptides, antibiotics, butenolides, and antiphytopathogenic 
substances (diketopiperazine) [3,4]. Notably, studies have 
confirmed that A. tamarii Kita can synthesize kojic acid. Kojic 
acid and its derivatives have diverse applications in the cosmetics 
and pharmaceutical industries, serving as antitumor, antidiabetic, 
anticancer, and skin-lightening agents [5]. This fungal species has also 
been reported to produce statin metabolites, which are cholesterol-
lowering drugs, through fermentation [3].

Solid-state fermentation provides promising results for enhancing the 
production of metabolites. In this fermentation process, fungi are grown 
on a solid medium, resembling their natural habitat [6]. Rice bran and 
wheat can be essential ingredients for solid-state fermentation due to 
their carbohydrate content and their role as energy sources for mold 
growth; moreover, they are very abundant as agricultural waste [7]. 
Rice bran and wheat were chosen for their nutrient-rich composition, 

Journal of Applied Biology & Biotechnology Vol. 12(4), pp. 195-202, Jul-Aug, 2024 
Available online at http://www.jabonline.in

ARTICLE INFO

Article history: 

Available online: May 20, 2024

Key words: 
Aspergillus tamarii,  
Chromatography,  
Rice bran,  
Solid-state fermentation,  
Wheat

Received on: December 04, 2023
Accepted on: March 20, 2024

DOI: 10.7324/JABB.2024.179836

http://crossmark.crossref.org/dialog/?doi=10.7324/JABB.2024.179836&domain=pdf


Suminto, et al.: Journal of Applied Biology & Biotechnology 2024;12(4):195-202196

fostering optimal growth and secondary metabolite production in 
A. tamarii. The selection was based on their alignment with the natural 
habitat of A. tamarii, commonly found in agricultural environments 
dominated by rice and wheat.

In addition to providing a conducive medium for fungal growth, factors 
such as moisture content, growth temperature, and incubation time 
play crucial roles in influencing fungal physiology and metabolism. 
Assessing these influencing factors is imperative, given the direct 
impact of fungal physiology and metabolism on metabolite production. 
Thus, the evaluation of rice bran and wheat as solid media, along 
with an investigation into the conditions of microbial fermentation, 
becomes necessary. In this context, solid-state fermentation could 
produce metabolite profiles that can be analyzed using both thin-layer 
chromatography (TLC) and liquid chromatography-mass spectrometry 
(LC-MS) [8,9]. TLC offers a rapid overview and initial identification, 
while LC-MS provides detailed information for confirmation. 
Integrating TLC and LC-MS enhances analytical capabilities for 
robust metabolite profiling, contributing to scientific rigor and a deeper 
understanding of complex metabolic pathways in studied biological 
systems.

To the best of our knowledge, comprehensive research on metabolite 
production from the Indonesian strain A. tamarii has yet to be 
conducted. Additionally, there has been no analysis of metabolite 
profiles using TLC and LC-MS methods for A. tamarii undergoing 
solid-state fermentation. The primary objective of this study is to 
investigate the optimal conditions for enhancing metabolite production 
by the Indonesian fungal strain A. tamarii (IPBCC 880066) cultivated 
on rice bran and wheat as solid media.

2. MATERIALS AND METHODS

The TLC method was used to determine the optimal conditions for the 
fermentation of rice bran and wheat with A. tamarii. Subsequently, the 
fermentation outcomes under these optimal conditions were analyzed 
using the LC-MS method.

2.1. Fungus and Materials
A. tamarii (IPBCC 880066) was obtained from the IPB Culture 
Collection, IPB University, Indonesia. Rice bran and wheat were 
purchased from an e-commerce platform in Jakarta, Indonesia. All 
chemical reagents used were commercially available.

2.2. Culture Preparation
A. tamarii was inoculated using the spread-plate method on a petri 
dish containing PDA media and incubated at 25°C for 6 days. The agar 
culture of A. tamarii was taken using a cork borer (diameter: ±10 mm), 
forming an agar disc, which was then transferred into a culture tube 
containing 20% glycerol. The agar discs containing A. tamarii were 
stored in a freezer (−20°C) as a culture stock [10].

2.3. Solid-State Fermentation
The solid substrates employed in the research were rice bran and 
wheat. These substrates were allocated into three 250-mL Erlenmeyer 
flasks: Container A contained 10 g of rice bran, Container B contained 
10 g of wheat, and Container C contained 5 g of rice bran and 5 g of 
wheat (mixture). Subsequently, 10 mL of distilled water was added to 
each Erlenmeyer flask containing the solid substrate. The media were 
autoclaved at 121°C for 20 min [11].

Fermentation was initiated by introducing one agar disc of culture 
from the culture stock into an Erlenmeyer flask containing sterile 
media. Moisture content optimization was conducted by adding 
varying volumes of distilled water to the solid media, specifically 
4  mL (40% moisture), 6  mL (60% moisture), and 8  mL (80% 
moisture). Temperature optimization involved fermenting at two 
different temperatures: 25°C and 30°C. The optimization of growth 
time was achieved by varying the fermentation duration between 7 
and 14 days [12,13].

2.4. Metabolites Extraction
The fermentation results were extracted using the maceration method. 
Following incubation, 50 mL of MeOH was added to the Erlenmeyer, 
stirred, and left for 48 h. Subsequently, filtration was performed with 
a vacuum pump. Additionally, 50  mL of MeOH was slowly added 
during filtration to rinse the sample in the Erlenmeyer [14,15]. The 
extraction of unfermented rice bran and wheat, serving as controls, 
was conducted using the same method.

2.5. TLC Analysis
Under various optimization conditions, the filtrate solution from 
the sample was applied to a TLC plate (Merck Silica Gel 60 F254, 
Germany) using a capillary tube. Subsequently, the TLC plate was 
placed into a chamber saturated with EtOAc: MeOH (7:3). Simvastatin 
was used as a standard for comparison [3]. The eluent, EtOAc: MeOH 
(7:3), was allowed to migrate to an elution distance of 6 cm. Following 
this, the TLC plate was removed and dried. The spots on the plate 
were observed under UV light at wavelengths of 254 nm and 365 nm. 
Additionally, the spots on the plate were observed using iodine for 
15 min until the spots turned brown.

The retention factor (Rf) was utilized to express the distance traveled 
by the spot on the plate surface. The retention factor (Rf) was 
determined by dividing the spot distance by the total distance traveled 
by the solvent. Retention factor calculations served as the basis for 
determining optimal fermentation conditions. The fermentation 
results under optimum conditions were subsequently analyzed by 
LC-MS [16].

2.6. LC-MS Analysis
The fermentation filtrate obtained under optimum conditions was 
concentrated using a rotary evaporator at a temperature of 50°C. The 
resulting crude extract was then subjected to LC-MS analysis. The 
LC-MS instrument was the Ultra Performance Liquid Chromatography 
Acquity UPLC® H-Class  System (Waters, US) equipped with a 
C18 HSS column (1.8  µm, 2.1×100  mm) maintained at a column 
temperature of 50°C in a room set at 25°C. The mobile phase consisted 
of a mixture of water with 5 mM ammonium formate as solution A and 
a mixture of acetonitrile with 0.05% formic acid as solution B. The 
flow rate was set at 0.2 mL/min with a gradient applied over 23 min, 
and the injection volume was 5 µL. Before injection, samples were 
filtered using a 0.2 µm filter.

The mass spectrometry parameters included positive electrospray 
ionization (ESI) mode, with a mass analysis range of 50–1200 m/z. 
The source temperature was maintained at 100°C, and the desolvation 
temperature was set at 350°C. The cone gas rate was 0 L/h, while the 
gas desolvation rate was 793 L/h. The collision energy was set at 4 V 
for low energy, and the ramp collision energy ranged from 25 to 60 V 
for high energy.



Suminto, et al.: Solid-state fermentation for metabolites enrichment 2024;12(4):195-202 197

2.7. Data Analysis
The chromatograms obtained in .raw format were processed using 
the Masslynx 4.1 application to predict the molecular formula of 
each compound with elemental composition. The molecular formula 
of the compound with the highest iFit confidence (iFit conf%) was 
selected, and the compound name was searched on the ChemSpider 
web page (http://www.chemspider.com/) by selecting the compound 
or ID number with the most publications.

3. RESULTS AND DISCUSSION

3.1. Culture Growth and Solid-State Fermentation
A. tamarii exhibited colonies with dark green conidia. Following 
inoculation on a petri dish and subsequent incubation, dark green 
conidia appeared in the colonies as early as the 3rd day [Figure 1a]. 
To preserve the agar disc culture stock, it was stored in 20% glycerol 
[Figure 1b]. Glycerol can mitigate cell damage at low temperatures, 
thereby maintaining cell functionality for an extended period of 
time [10]. Glycerol concentration for fungal culture preservation can 
be 10% for 1  month of storage [10], but the glycerol concentration 
reported for a more extended storage period (6 months) was 50% [17]. 
The form of agar disc, combined with glycerol as a cryoprotectant, 
was adequate for fungal culture maintenance at −20°C [17]; therefore, 
the glycerol concentration chosen for storage between 1 and 6 months 
was 20%.

The growth of A. tamarii in solid-state fermentation commenced with 
the development of colonies, followed by the emergence of brownish-
green conidia [Figure 1c]. In solid-state fermentation, water is needed 
to swell the substrate so that the microorganism can utilize the nutrient, 
while the moisture meets the minimum aw of the microorganism for 
growth. The optimum moisture content to produce cells and enzymes 
can be different; the substrate type is a determinant, and the duration of 
fermentation combined with moisture content results differently [18].

3.2. Metabolite Profiles
The elution results of the standard and samples on TLC plates 
were observed under UV light at 254  nm [Figure  2a] and 365  nm 
[Figure  2b]. Simvastatin as the standard was marked with A, while 
the extracted samples were marked as follows: rice bran incubated at 
25°C (B), wheat incubated at 25°C (C), a mixture of rice bran and 
wheat incubated at 25°C (D), and rice bran incubated at 30°C (E). 
As suggested by Abdelwahab et al. [19], statins demonstrate optimal 
sensitivity at a wavelength of 254  nm. Simvastatin was detected at 
254 nm (a) but not 365 nm (b). Meanwhile, the Rf values for all samples 
are summarized in Table 1. Even though there were several spots with 
Rf values close to simvastatin, these spots could not be concluded to 

be simvastatin because they still exhibit fluorescence at a wavelength 
of 365 nm. Simvastatin only absorbs light at 254 nm without emitting 
fluorescence at 365 nm. It is possible that the compound shares polarity 
characteristics with simvastatin but contains different functional 
groups, such as the structure of a flavonoid glycoside that can emit 
light at a wavelength of 365 nm. To validate the UV light visualization 
results, elution outcomes were also observed with iodine vapor. Iodine 
vapor introduced to the sample resulted in brown spots with varying 
intensity [20].

The TLC results served as the foundation for selecting the optimal 
fermentation conditions. Screening of a broad spectrum of biological 
properties of plants is suitable to be conducted by TLC, and the usage 
of other analytical methods coupled with TLC has emerged [8]. Thus, 
the TLC method was used for initial compound separation. The criteria 
for optimum fermentation conditions were based on achieving well-
defined compound separation on TLC. A desirable retention factor for 
effective compound separation fell within the range of 0.2–0.8 [21]. 
Factors such as non-overlapping spots, a balanced solvent in the elution 
process (preventing inaccurate Rf values), and avoidance of streaking—
where high sample concentration leads to line-shaped separation—were 
considered. Overlapping spots complicate Rf measurements and hinder 
the precise identification of each compound’s endpoint. A  properly 
balanced solvent system, selected based on interaction with sample 
molecules, is crucial for achieving accurate separation. Imbalances, such 
as overly polar or non-polar solvents, distort Rf values by influencing 
the mobility of components. Streaking, resulting from uneven sample 
application or irregularities in the stationary phase, introduces uncertainty 
in measuring the distance traveled. Maintaining clean spots is essential 
for precise Rf calculations, ensuring the reliability of chromatographic 
separation. The number of spots was also considered, as the TLC method 
is commonly employed for screening bioactive compounds [8,22,23].

Considering all the criteria, we concluded that the optimal fermentation 
condition was 40% moisture with an incubation temperature of 25°C 
for 14 days. Under these conditions, a favorable retention factor was 
observed, with no overlapping or streaking, and there was a significant 
separation of compounds, evident by the presence of multiple spots. 
The optimal conditions in this study differed from a prior one, where 
A. tamarii was grown on brewery spent grain at 40°C for 4  days, 

Figure 1: Aspergillus tamarii culture on agar plate (a), agar discs as culture 
stock (b), and solid-state fermentation (c).

a b c

Figure 2: Thin-layer chromatography profiles of medium fermented 
with Aspergillus tamarii under UV of 254 nm (a) and 365 nm (b). Note: 

simvastatin (a), rice bran incubated at 25°C (b), wheat incubated at 25°C (c), 
mixture of rice bran and wheat incubated at 25°C (d), and rice bran incubated 

at 30°C (e).

ba
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3.3. LC-MS Analysis Results
According to the optimal conditions resulting from the previous step, 
A. tamarii was cultivated. Subsequently, the obtained extract was 
separated using an LC-MS instrument to give chromatogram data. 
The chromatograms were processed using Masslynx 4.1 software. 
The molecular formula for each compound was predicted using 
Masslynx 4.1 software, where each chromatogram peak corresponded 
to a distinct compound. The chromatogram results from solid-state 
fermentation with A. tamarii, employing 40% moisture and incubated 
at 25°C for 14 days, are illustrated in Figures 3 and 4. In this research, 
the LC-MS results were presented as qualitative data, offering insights 
into the identity and presence of compounds rather than their specific 
quantitative amounts.

Figure 3 depicts the metabolites produced in the fermentation of rice 
bran with A. tamarii. There are 22 types of compounds, including 
three unknown compounds identified on the ChemSpider website. 
In contrast, wheat fermentation with A. tamarii resulted in 20 types 
of compounds, with six unknown compounds identified on the 
ChemSpider website [Figure 4]. Although A. tamarii cultivated on both 
solid media yields nearly similar metabolite profiles, the abundance of 
each detected compound varies significantly. This discrepancy may 
stem from differences in A. tamarii’s ability to metabolize rice bran 
and wheat nutrients. Another factor is the initial diversity in metabolite 
concentrations in rice bran and wheat, resulting in similar metabolite 
types during fermentation but with varying concentrations [28-30]. 
Meanwhile, identifying unknown compounds in this research adds 
curiosity and novelty to the study. Unraveling their nature could offer 
new insights and applications, contributing to a deeper understanding 
of biological processes and revealing valuable applications. The 
compounds with 100% abundance are detailed in Table 2.

Solid-state fermentation of rice bran by A. tamarii led to the production 
of compounds belonging to the amine, amide, ketone, carboxylic ester, 
sulfonic acid, hydrazide, and cyclohexane groups. Conversely, the 
fermentation of wheat by A. tamarii resulted in compounds classified 
as amides, amines, ketones, carboxylic esters (benzoates), and alcohol. 
LC-MS screening revealed the presence of N-(2-hydroxypropyl)-
2-methylacrylamide and N6-[(benzyloxy)carbonyl]-L-lysine in the 
results of A. tamarii solid-state fermentation on both rice bran and 
wheat. The results showed different metabolite categories produced 
during rice bran and wheat fermentations. The diversity of metabolites 
may influence the potential applications of A. tamarii in various 
industries, such as pharmaceuticals or agriculture. For example, 
3,5-bis(1H-imidazol-1-ylmethyl)-4H-1,2,4-triazol-4-amine, identified 
in wheat fermentation, and 4-hydrazino-6-(4-morpholinyl)-N-phenyl-
1,3,5-triazin-2-amine, found in rice bran fermentation, belong to 
the category of triazole derivative compounds. Researchers have 
reported that compounds with triazole residues exhibit significant 
pharmacological activities, including antiviral and antimicrobial 
properties [31].

In a study by Zarei et al., 453 metabolites were identified in rice bran. 
Based on metabolic pathways, these metabolites were categorized 
into 126 amino acids, 35 carbohydrates, 28 co-factors and vitamins, 
11 energy-related lipids, 137 lipids, 40 nucleotides, 28 peptides, 
55  secondary metabolites, and 8 xenobiotic metabolites [32]. From 
these categories, 209 metabolites were deemed to have potential 
human health benefits. Recent studies focused on only 65 rice bran 
metabolites from amino acids, vitamins, co-factors, and secondary 
metabolites, emphasizing their medicinal and human health-promoting 
attributes [32]. Meanwhile, wheat is rich in compounds essential 

Table 1: Retention factor (Rf) on thin‑layer chromatography of compounds 
from rice bran and wheat fermented with Aspergillus tamarii under certain 
conditions (moisture content, growth temperature, and incubation time).

Optimization 
condition

Media Rf

UV254 nm UV365 nm Iodine 
Vapor

40% of 
moisture

Rice bran 0.850 0.850 0.125

Wheat 0.783; 0.950 0.916 ‑

Mixture 0.850 0.850 0.125

60% of 
moisture

Rice bran 0.830 0.830 ‑

Wheat 0.916 0.916 0.816; 0.880; 
0.930

Mixture 0.816 0.816 ‑

80% of 
moisture

Rice bran 0.925 0.925 ‑

Wheat 0.742; 0.816 0.816 0.870; 0.950

Mixture 0.925 0.925 ‑

Temperature 
at 25°C

Rice bran 0.730; 0.860; 
0.93

0.930 ‑

Wheat 0.730; 0.880; 
0.930

0.750; 0.940 ‑

Mixture 0.725; 0.880; 
0.930

0.950 ‑

Temperature 
at 30°C

Rice bran 0.880; 0.950 0.960 ‑

Wheat 0.916; 0.960 0.975 ‑

Mixture 0.930; 0.980 0.980 ‑

7 days of 
incubation

Rice bran 0.760; 0.960 0.975 ‑

Wheat 0.740; 0.890 0.890 ‑

Mixture 0.916; 0.960 0.975 ‑

14 days of 
incubation

Rice bran 0.730; 0.925 0.916 ‑

Wheat 0.760; 0.930 0.933 ‑

Mixture 0.760; 0.950 0.916 ‑

Simvastatin Rice bran 0.75; 0.86; 0.93 ‑ ‑

Wheat 0.783; 0.942 ‑ ‑

Mixture 0.683 ‑ ‑

Simvastatin standard 0.816; 0.900; 
0.900

focusing on ascorbic acid production [24]. Another investigation noted 
that A. tamarii Kita UCP 1279 exhibited the highest fructosyltransferase 
activity after 4 days of incubation at 30°C in 3 g of wheat bran, 70% 
moisture, and 20% sucrose [25]. In contrast, our study screened all 
metabolites produced by A. tamarii.

The optimal condition for metabolite production seems to depend 
on the specific metabolites or substances analyzed. The current 
study found that metabolite production tends to increase between 
25°C and 30°C and decrease at both minimum and maximum 
temperatures [26]. This finding indicated that the fungal fermentation 
process, with proper conditions, could maximize metabolite or enzyme 
production. Solid-state fermentation offers a promising bioprocess for 
producing metabolites from agro-waste and industrial residues. These 
residues, including bran, bagasse, husks, pomace, seeds, peels, and 
corn residue, are generated annually and often need to be more utilized 
or discarded [27]. Recently, significant interest has been in utilizing 
these abundant and cost-effective renewable substrates to produce 
various valuable compounds.
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Figure 4: Chromatogram depicting the results of solid-state fermentation of wheat with Aspergillus tamarii under 40% moisture, incubated at 25°C for 14 days.

Figure 3: Chromatogram depicting the results of solid-state fermentation of rice bran with Aspergillus tamarii under 40% moisture, incubated at 25°C for 14 days.

for human nutrition, encompassing nutrients, antinutrients, lipids, 
phytochemicals, and fiber. Tais et al. identified 248 unique compounds 
in whole wheat grains, successfully grouping 37 compounds [33]. The 
categorized wheat metabolites include hydroquinone, hydroxycinnamic 
acid amide, benzoxazionide, flavonoids, lignans, and various phenolic 
compounds.

Certain Aspergillus species, such as Aspergillus niger, are known for 
their abundance of primary and secondary metabolites. According 
to Yu et al., A. niger produced 166 secondary metabolites identified 
up to 2020 [34]. These compounds fall into categories such as 
pyrones (gamma-naptilpyrone, alpha-pyrone, and gamma-pyrone), 

alkaloids (pyranonigrin derivatives, pyridone, fumonisin, nigerloxin, 
and ergosteriamide), cyclopentapeptides (diketopiperazine and 
malformin), polyketides (citric acid, itaconic acid, 2-phenylethanol, 
p-hydroxyphenylacetic acid, gallic acid, benzoic acid derivatives, and 
asperielone), and sterols (14-dehydroergosterol, nigerasterol A and B, 
and ergosteriamide).

The versatile application of LC-MS analysis extends to detecting 
metabolites, environmental contaminants, and food contaminants 
through non-targeted approaches. In this study, a non-targeted approach 
offers an advantage in capturing a broader spectrum of compounds, 
encompassing known and unknown entities. This approach will 
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Table 2: Predicted compounds in LC‑MS/MS from solid‑state fermentation of rice bran and wheat with Aspergillus tamarii at 40% moisture, incubated at 25°C for 14 days.

Retention 
time (min)

Measured 
mass

Calculated 
mass

Formula Predicted compound Rice 
bran

Wheat

1.30 144.1028 144.1025 C7H14NO2 N‑(2‑Hydroxypropyl)‑2‑methylacrylamide  

1.98 162.0565 162.0555 C9H8NO2 1H‑Indole‑3‑carboxylic acid 

2.03 143.0346 143.0344 C6H7O4 5‑Hydroxy‑2‑(hydroxymethyl)‑4H‑pyran‑4‑one (asam kojik) 

2.53 264.1452 264.1434 C8H14N11 Unknown 

3.50 281.1505 281.1501 C14H21N2O4 N6‑[(Benzyloxy) carbonyl]‑L‑lysine 

4.45 265.1554 265.1525 C10H17N8O 4‑{5‑[(4‑Methyl‑1‑piperazinyl) 
methyl]‑1H‑1,2,3‑triazol‑1‑yl}‑1,2,5‑oxadiazol‑3‑amine



4.49 263.1393 263.1387 C9H20N6OCl N2‑Methoxy‑N2, N4, N4, N6, N6‑pentamethyl‑1,3,5‑triazine‑2,4,6‑triamine 
hydrochloride (1:1)

4.68 304.1658 304.1634 C12H18N9O N‑[6‑(4‑Methyl‑1‑piperazinyl)‑4‑pyrimidinyl]‑2‑(1H‑tetrazol‑1‑yl) acetamide 

4.99 243.1336 243.1291 C3H11N14 Unknown 

5.19 346.2119 346.2104 C15H24N9O 3‑(5‑Methyl‑1H‑tetrazol‑1‑yl)‑N‑ {2‑[4‑(2‑pyrimidinyl)‑1‑piperazinyl] 
ethyl} propanamide



5.35 211.1451 211.1420 C7H15N8 N‑[1‑(4‑Methyl‑4H‑1,2,4‑triazol‑3‑yl) ethyl] imidodicarbonimidic diamide 

5.65 211.1449 211.1420 C7H15N8 N‑[1‑(4‑Methyl‑4H‑1,2,4‑triazol‑3‑yl) ethyl] imidodicarbonimidic diamide

5.76 252.1607 252.1573 C10H18N7O [4,6‑Bis (dimethylamino)‑1,3,5‑triazin‑2‑yl](methoxymethyl) cyanamide 

6.07 245.1310 245.1263 C10H13N8 3,5‑Bis (1H‑imidazol‑1‑ylmethyl)‑4H‑1,2,4‑triazol‑4‑amine 

6.48 241.1450 241.1413 C9H17N6O2 N‑[3‑(Dimethylamino) propyl]‑5‑nitro‑4,6‑pyrimidine diamine 

6.73 280.1919 280.1886 C12H22N7O 2‑Hydrazino‑4‑(4‑morpholinyl)‑6‑(1‑piperidinyl)‑1,3,5‑triazine 

6.89 388.1879 388.1918 C10H22N13O4 Unknown

6.99 249.1132 249.1127 C14H17O4 Diethyl benzylidenemalonate 

7.19 344.2254 344.2298 C15H30N5O4 2‑{(4S)‑3‑[(Ethylcarbamoyl) 
amino]‑4‑methoxy‑1‑pyrrolidinyl}‑N‑(isopropylcarbamoyl) propanamide



7.71 308.2227 308.2259 C15H34NO3S 3‑(Dodecylamino)‑1‑propanesulfonic acid 

8.09 288.1620 288.1573 C13H18N7O 4‑Hydrazino‑6‑(4‑morpholinyl)‑N‑phenyl‑1,3,5‑triazin‑2‑amine 

8.14 560.3566 560.3534 C24H42N13O3 Unknown 

8.68 331.0814 331.0818 C17H15O7 5,7‑Dihydroxy‑2‑(4‑hydroxy‑3,5‑dimethoxyphenyl)‑4H‑chromen‑4‑one (tricin) 

8.73 548.3607 548.3633 C21H46N11O6 Unknown 

9.23 379.2959 379.2961 C22H39N2O3 1‑Cycloheptyl‑5‑{[4‑(3‑methoxypropyl)‑1‑piperidinyl] 
carbonyl}‑2‑piperidinone



9.35 261.1502 261.1464 C12H17N6O N'‑([1,2,4]Triazolo[4,3‑b] pyridazin‑6‑yl) cyclohexanecarbohydrazide 

9.74 614.3769 614.3752 C28H56NO13 35‑Amino‑3,6,9,12,15,18,21,24,27,30,33‑undecaoxapentatriacont‑1‑yl methacrylate 

9.91 665.2889 665.2849 C36H33N12O2 Unknown 

10.22 403.2024 403.1981 C20H27N4O5 2‑(Diethylamino) ethyl 4‑{[(1,3‑dimethyl‑2,4,6‑trioxotetrahydro‑5 
(2H)‑pyrimidinylidene) methyl] amino} benzoate

10.25 403.2008 403.2022 C25H27N2O3 N'‑[(2‑Isopropyl‑5‑methylphenoxy) acetyl]‑4‑biphenylcarbohydrazide 

10.97 642.4053 642.4024 C23H48N17O5 Unknown 

11.05 288.1588 288.1573 C13H18N7O 4‑Hydrazino‑6‑(4‑morpholinyl)‑N‑phenyl‑1,3,5‑triazin‑2‑amine

11.45 318.3018 318.2981 C14H36N7O Unknown 

11.45 318.3009 318.3008 C18H40NO3 2‑Amino‑1,3,4‑octadecanetriol 

11.83 439.3325 439.3298 C24H39N8 4,4'‑Bis[(3,5,6‑trimethyl‑2‑pyrazinyl) methyl]‑1,1'‑bipiperazine 

12.07 337.1555 337.1525 C16H17N8O 1‑Ethyl‑7‑[2‑methyl‑6‑ (4H‑1,2,4‑triazol‑3‑yl)‑3‑pyridinyl]‑ 
3,5‑dihydropyrazino[2,3‑b] pyrazin‑2 (1H)‑one



12.99 520.3415 520.3432 C18H42N13O5 Unknown 

13.04 520.3392 520.3346 C23H46N5O8 2‑Methyl‑2‑propanyl 4‑(20‑azido‑3,6,9,12,15,18‑ 
hexaoxaicos‑1‑yl)‑1‑piperazinecarboxylate



13.59 496.3455 496.3459 C20H46N7O7 Unknown 

13.61 496.3412 496.3459 C20H46N7O7 Unknown 

 appeared on the related chromatogram, LC‑MS/MS: Liquid chromatography with tandem mass spectrometry.
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