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ABSTRACT

Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid 
plaques and neurofibrillary tangles in the brain. Despite decades of research, the underlying causes of AD remain 
poorly understood. However, recent evidence suggests that microbial infections may play a role in the development 
and progression of AD. With the advent of single-cell sequencing (SCS) technology, researchers now have a 
powerful tool to study the microbial communities in AD brains at high resolution. This review article focuses 
on the latest research on the role of SCS in investigating the relationship between microbial infections and AD. 
By enabling the identification and characterization of specific microbial species and their interactions with host 
cells in AD brains, SCS has provided new insights into the complex microbial landscape of AD. Furthermore, this 
technology has the potential to impact the diagnosis and treatment of AD by revealing new targets for therapeutic 
intervention. Finally, we also discussed about the challenges, limitations, ethical, and translational considerations 
of SCS technology, as well as future research directions in this area. The potential impact of SCS on understanding 
microbial infections in AD is significant, and it may lead to the development of new therapies and preventive 
measures for this devastating disease. In conclusion, this review highlights the important role that SCS plays in 
advancing our understanding of the complex microbial communities in AD and their potential involvement in 
disease pathogenesis.

1. INTRODUCTION

Microbes are believed to contribute to the development of 
neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s 
disease, and multiple sclerosis. The precise mechanisms underlying this 
association are still being investigated, but it is suggested that certain 
microbes may elicit an immune response in the brain, resulting in 
chronic inflammation and damage to neurons [1-3]. Several techniques 
have been used to identify microbial diseases in different kinds of 
diseases [Figure  1]. For instance, the bacterium Porphyromonas 
gingivalis, which is commonly associated with gum disease, can travel 
through the bloodstream and reach the brain, where it can promote the 
formation of amyloid plaques, a hallmark of Alzheimer’s disease, and 
damage neurons. Besides, some viruses and bacteria are also linked 
to the development of Parkinson’s disease. For instance, the herpes 
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simplex virus has been detected in the brains of Parkinson’s patients, 
and certain pesticides have been shown to raise the risk of developing 
the disease in individuals who are infected [4,5]. While the relationship 
between microbes and neurodegenerative disease is complicated and 
not yet fully understood, ongoing research is providing novel insights 
into the potential role of microbes in the development and progression 
of these debilitating conditions. Alzheimer’s disease is a neurological 
disorder characterized by progressive cognitive decline, memory loss, 
and changes in behavior. With around 55 million individuals affected 
globally in 2020, Alzheimer’s disease is the primary cause of dementia 
in older adults. In 2021, the estimated total cost of care for individuals 
with Alzheimer’s disease and other dementias in the United States will 
be approximately $355 billion [6,7]. Over 6 million people across the 
United States are currently affected by Alzheimer’s disease, spanning 
across all age groups. According to projections for the year 2023, an 
estimated 6.7 million Americans aged 65 or older will be diagnosed 
with Alzheimer’s disease. A significant percentage of these individuals, 
around 73%, will be over the age of 75. It is estimated that by the year 
2050, the global population of a particular demographic will increase 
to almost 13 million individuals [8].
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Research studies have increasingly suggested that microbial infections 
could be linked to the development and progression of Alzheimer’s 
disease. Studies have found that microbial agents such as bacteria, 
viruses, and fungi can be present in the brains of Alzheimer’s patients, 
contributing to the disease’s development [9-11]. Alzheimer’s disease 
pathogenesis is multifaceted, including genetic, environmental, and 
lifestyle factors. The disease is identified by an accumulation of amyloid 
beta (Aβ) and tau proteins in the brain, forming abnormal clumps and 
tangles. These clumps and tangles disrupt normal brain function and 
eventually lead to neuronal death [12-15]. Historically, Alois Alzheimer 
first described Alzheimer’s disease in the early 1900s [12,16]. At that 
time, a slow-acting virus was believed to be the cause, but this theory 
was later disproven. Present-day studies focus on the role of chronic 
infections in Alzheimer’s disease development [16]. Several microbial 
agents are believed to be involved in Alzheimer’s disease pathogenesis, 
including Porphyromonas gingivalis [4,17], Treponema denticola [18], 
Fusobacterium nucleatum [10], herpes simplex virus type 1 (HSV-1) [5], 
and Chlamydia pneumonia [19]. These agents enter in the brain through 
different mechanisms, including the blood-brain barrier and olfactory 
system, and cause inflammation and oxidative stress, leading to neuronal 
damage and the formation of amyloid plaques and tau tangles [5,20-22]. 
Recent studies have further strengthened the link between microbial 
infections and Alzheimer’s disease. For instance, a study in 2020 
found that a fungal infection called Candida albicans could trigger the 
development of Alzheimer’s disease in mice. Another study in 2021 and 
2022 found a connection between periodontal disease and an increased 
risk of developing Alzheimer’s disease [23,24].

Single-cell sequencing is a powerful tool for understanding the 
complex molecular mechanisms involved in Alzheimer’s disease 
and microbial infections. It allows for a comprehensive analysis of 
individual cells, providing a high-resolution view of the genetic 
and epigenetic changes that occur during infection and disease 
progression [25]. Single-cell sequencing can provide insights into 
the cellular interactions and pathways that contribute to disease 
pathogenesis. For instance, a study used single-cell sequencing to 
identify different immune-cell populations in the brains of Alzheimer’s 
patients, shedding new light on the immune system’s role in disease 
development [25]. Moreover, single-cell sequencing can help identify 
microbial agents present in the brains of Alzheimer’s patients. A study 
used single-cell sequencing to identify bacterial species in postmortem 
brain tissue from Alzheimer’s patients, which may help understand 
the role of microbes in disease pathogenesis. It also helps identify the 
molecular mechanisms underlying resistance to microbial infections 

and the effects of antimicrobial therapies. A  study using single-cell 
sequencing to analyze immune cells from patients with tuberculosis 
revealed genetic changes associated with resistance to antimicrobial 
drugs. Overall, single-cell sequencing shows great promise for 
advancing our understanding of the complex molecular interactions 
involved in Alzheimer’s disease and microbial infections. It may help 
identify new therapeutic targets and develop personalized treatment 
strategies for this devastating disease [26,27]. Detailed experimental 
and computational approach steps are shown in Figure 2 and Table 1.

1.1. Correlation between Microbial Infections and Amyloid 
Beta (Aβ)
Recent investigations have uncovered a previously overlooked facet of 
amyloid beta (Aβ), a protein traditionally associated with Alzheimer’s 
disease pathology. Beyond its role in Alzheimer’s, Aβ has emerged 
as a substance with antimicrobial properties, suggesting a potential 
involvement in the brain’s innate immune system [28,29]. Studies 
indicate that Aβ exhibits noteworthy antibacterial and antifungal 
activities, implying a role in protecting the brain against diverse 
pathogens. The recognition of Aβ as an active participant in the 
innate immune response underscores its potential significance during 
infections, with increased Aβ production observed in response to 
microbial threats. This revelation prompts intriguing inquiries into the 
evolutionary context of Aβ, proposing that its antimicrobial properties 
might have evolved as a defense mechanism against infections. 
Nevertheless, the delicate equilibrium between Aβ production and 
clearance is pivotal. Dysregulation and excessive accumulation of 
Aβ are associated with neurodegenerative disorders, particularly 
Alzheimer’s disease. This evolving understanding of Aβ as an 
antimicrobial peptide not only sheds light on its potential protective 
functions but also opens new avenues for exploring the intricate 
dynamics between the immune system and neurodegenerative diseases. 
These insights may pave the way for novel therapeutic strategies in the 
realm of neurodegenerative research [28,29].

Predominantly focusing on humans, various studies have implicated 
specific microbes in the brains of the elderly, with notable mentions 
including herpes simplex virus type 1 (HSV1), Chlamydia pneumoniae, 
and various spirochaete types as potential contributors to the etiology 
of Alzheimer’s disease (AD) [5,19,30]. In addition, instances of fungal 
infection in AD brains have been documented [22], alongside reports of 
abnormal microbiota in the blood of AD patients. The initial observations 
of HSV1 in AD brains date back almost three decades. The growing body 
of research in this area, with approximately 100 studies solely focusing 

Figure 1: Timeline of significant milestones in single-cell sequencing of microbial communities, along with the technique used up to 2023. 
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on HSV1, underscores the need for a reassessment of the infection and 
AD relationship. Recent investigations suggest a significant association 
between the gene encoding cholesterol 25-hydroxylase (CH25H) and the 
development of Alzheimer’s disease (AD). Virus infection selectively 
triggers the upregulation of CH25H, leading to the generation of its 
enzymatic product, 25-hydroxycholesterol (25OHC), which activates 
innate antiviral immunity [31,32]. Polymorphisms within human 
CH25H are implicated in both AD susceptibility and amyloid-beta 

(Aβ) deposition, suggesting that Aβ induction may be a key target of 
25OHC. This provides a potential mechanistic link between infection 
and Aβ production [29,33]. Moreover, Aβ itself is recognized as an 
antimicrobial peptide with potent activity against various bacteria and 
yeast, underscoring its role in the immune response. This introduces 
another layer to the possible connection between infections and AD, 
as Aβ also demonstrates antiviral activity [29,34-36]. In addition, the 
heightened expression of another antimicrobial peptide, β-defensin 1, 

Figure 2: Experimental and computational approaches for studying microbial pathogenesis in Alzheimer's disease. The rectangular box is connected with the same 
color arrow that connects the final steps of techniques.

Table 1: Bioinformatics tools commonly used for studying microbial pathogenesis in Alzheimer’s disease.

Tools Use Tool Links References

QIIME (Quantitative 
Insights Into Microbial 
Ecology

analyze metagenomics
data (Example: quality control, taxonomic classification, and 
diversity analysis)

http://qiime.org/ [140]

MG‑RAST analyze metagenomics
data (Example: quality control, taxonomic classification, 
functional annotation, and comparative analysis)

https://www.mg‑rast.org/ [141]

MetaPhlAn profiling the microbial composition of metagenomic samples https://huttenhower.sph.harvard.edu/metaphlan [72]

HUMAnN2 used for functional analysis of metagenomic data https://huttenhower.sph.harvard.edu/humann/ [142]

PathSeq used for detecting microbial pathogens in metagenomic samples https://software.broadinstitute.org/pathseq/ [143]

MetaGOmics analyze metagenomics
data (quality control, taxonomic profiling, gene prediction, and 
functional annotation)

https://meta.yeastrc.org/metagomics/home.do [144]

MEGAN analyze metagenomics
data (clustering, alignment, and visualization of taxonomic data)

http://ab.inf.uni‑tuebingen.de/software/megan6/ [145]

PICRUSt functional analysis of microbial communities based on their 16S 
rRNA gene profiles

https://picrust.github.io/picrust/ [146]

MetaBAT binning metagenomic contigs into genomes https://bitbucket.org/berkeleylab/metabat [147]

Kraken used for taxonomic classification of metagenomic reads https://ccb.jhu.edu/software/kraken/ [73]
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in the AD brain further supports the correlation between the immune 
system’s response to infections and the pathological processes observed 
in Alzheimer’s disease [37].

1.2. Primary Advantages of Single-cell Sequencing Over Bulk 
Sequencing
Single-cell sequencing is a revolutionary technology that enables 
researchers to study individual cells in isolation, as opposed to 
traditional bulk sequencing methods that measure the genetic 
information of an entire population of cells simultaneously. The 
technology provides new avenues for research by allowing researchers 
to study cellular heterogeneity, identify rare cell types, and characterize 
the genetic and epigenetic landscape of individual cells. Single-cell 
sequencing involves isolating individual cells and amplifying their 
genetic material before sequencing it. Different types of single-cell 
sequencing technologies, such as RNA sequencing (scRNA-seq), 
DNA sequencing (scDNA-seq), and chromatin accessibility profiling 
(scATAC-seq), are available [38-40].

The primary advantages of single-cell sequencing over bulk sequencing 
are as follows:
•	 Increased resolution: Single-cell sequencing provides researchers 

with the ability to study individual cells, enabling them to identify 
rare cell types and reveal cellular heterogeneity that would have 
been missed with bulk sequencing [41].

•	 Accurate representation of biology: Traditional bulk sequencing 
techniques tend to obscure the true biology of a sample by 
averaging the genetic information of all cells within the sample. 
In contrast, single-cell sequencing provides a more accurate 
representation of the biology of a sample by allowing researchers 
to study the genetic information of each cell [42,43].

•	 Identification of rare cells: Single-cell sequencing is an effective 
tool for identifying rare cell types present in low abundance in a 
sample. Such rare cells can be critical for understanding disease 
pathology or developing new therapies [44].

•	 Understanding of cellular development: Single-cell sequencing 
can help researchers gain insights into how cells develop and 
differentiate into various cell types [45,46].

One significant example of the power of single-cell sequencing 
is its use in cancer research. By studying individual cancer cells, 
researchers can identify genetic mutations and epigenetic changes 
that are specific to individual cells. This enables them to understand 
the evolution of cancer cells over time and identify novel therapeutic 
targets [47]. Recently, researchers used single-cell sequencing to 
study the genetic heterogeneity of bladder cancer. They identified 
multiple subpopulations of cancer cells with distinct genetic and 
epigenetic features and mapped the developmental trajectory of the 
cancer cells. The study provides new insights into the development of 
bladder cancer and could lead to the development of more effective 
therapies [48-50].

1.3. Single-cell Sequencing Techniques to Identify Potential 
Pathogens in Alzheimer’s Disease Patients
Alzheimer’s disease (AD) is a neurological disorder that affects 
memory cognitive function and ultimately leads to neuronal 
death [12,51,52]. Recent studies have shown that there may be a 
link between certain pathogens and the development of Alzheimer’s 
disease (AD) [11,17,18,22,53-55] [Figure  3, Table  2]. Various 
research studies have utilized single-cell sequencing techniques to 
identify potential pathogens in AD patients. One study published in 

Frontiers in Molecular Neuroscience analyzed brain samples from AD 
patients and non-demented controls using single-cell RNA sequencing 
(scRNA-seq) [56-58]. The researchers observed an upregulation of 
genes related to the herpes simplex virus type 1 (HSV-1) in AD patients 
compared to controls [5]. They also found a correlation between 
the level of HSV-1 expression and the severity of AD symptoms. 
This study suggests that HSV-1 may play a role in the development 
of AD [5]. Li et al., identified several viral RNA sequences in brain 
tissue samples from AD patients, including herpesviruses and human 
endogenous retroviruses. They also found that the expression of these 
viral sequences was correlated with the expression of genes associated 
with neuroinflammation and AD pathology [27]. scRNA-seq was 
used to explore the potential role of the oral microbiome in AD. The 
researchers found oral bacteria present in brain tissue samples from 
AD patients, suggesting that the oral microbiome may be involved 
in the development of AD. Overall, these studies provide evidence to 
suggest that infectious agents, such as viruses and oral bacteria, may 

Table 2: Potential Pathogens Linked to Alzheimer’s Disease Development 
and Progression.

Microbes Effects in AD References

Herpes simplex virus (HSV) increased risk o 
f Alzheimer’s disease

[5]

Porphyromonas gingivalis cause neurodegeneration  
in mice

[4,17]

Chlamydia pneumonia increased risk of Alzheimer’s 
disease

[19]

Spirochetes cause neurodegeneration  
in mice

[20]

Streptococcus neurodegeneration in mice [148]

Bacteroides fragilis neurotoxic proteins [149]

Enterococcus faecalis formation of amyloid  
beta plaques

[29]

Escherichia coli contribute to 
neuroinflammation

[64]

Human herpesvirus 6A and 7 increased risk of Alzheimer’s 
disease

[150]

Fungi (Saccharomyces 
cerevisiae, Malassezia 
globosa, Malassezia restricta, 
Penicillium, Phoma)

neurodegeneration in mice [22]

Candida tropicalis, Candida 
krusei

[22]

Aspergillus fumigatus, 
Cryptococcus neoformans, 
and Malassezia spp

AD pathogenesis [151]

Figure 3: Potential bacteria, viruses, and fungal pathogens associated with 
AD development and progression.
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contribute to the development of AD. Further research is required to 
fully comprehend the relationship between pathogens and AD and to 
develop new treatments and prevention strategies [4,17,27].

Pettas et al. utilized single-cell RNA sequencing to examine the 
transcriptional profiles of brain cells in Alzheimer’s patients. The 
study revealed a network of genes involved in antiviral immunity that 
was disrupted in Alzheimer’s patients compared to healthy controls. 
The study also observed evidence of viral infection in the brains of 
Alzheimer’s patients, including the presence of viral RNA and protein. 
These findings suggest that viral infection might contribute to the 
neuroinflammation and neuronal damage that occur in Alzheimer’s 
disease [58,59]. Another study utilized single-cell sequencing to 
investigate the role of the gut microbiome in Alzheimer’s disease. 
The study observed that the gut microbiome of Alzheimer’s patients 
was distinct from that of healthy controls, with an increase in pro-
inflammatory bacteria and a decrease in anti-inflammatory bacteria. 
The study also found evidence of gut bacterial translocation to the brain, 
suggesting that the gut-brain axis might be involved in Alzheimer’s 
disease pathogenesis [2,60,61]. The authors have made a significant 
breakthrough in delivering genetic material into microglia cells using 
newly discovered adeno-associated virus (AAV) variants. Microglia 
cells are crucial immune cells that shape neural circuits in the CNS and 
play a vital role in immune responses. The AAV-cMG and AAV-MG 
variants can efficiently deliver genetic payloads, including fluorescent 
labeling, calcium and neurotransmitter imaging, and genome editing in 
microglia in vivo. The discovery of these AAV variants is expected to 
aid in the study of microglia biology and the underlying mechanisms 
of diseases associated with microglial dysfunction without inducing 
immune activation in microglia cells [62].

Recent studies have suggested a potential link between the gut 
microbiome and the development and progression of AD. Single-
cell sequencing (SCS) is a technique that has the potential to identify 
specific microbial species involved in AD. SCS allows for the high-
resolution profiling of the microbiome at the single-cell level, which 
can reveal rare microbial populations and identify individual microbes 
within complex communities. By providing detailed information 
about the genetic makeup and functional capacity of individual 
microbial cells, SCS can help researchers investigate their roles in 
disease pathogenesis [2,62-64]. One study used SCS to analyze the 
gut microbiome of AD patients and healthy controls and identified 
differences in the abundance of certain microbial species between the 
two groups. The researchers found an increase in pro-inflammatory 
bacteria, such as Escherichia coli and Shigella flexneri, in AD 
patients compared to controls, while anti-inflammatory bacteria like 
Faecalibacterium prausnitzii were reduced in AD patients [65,66]. 
Another study used SCS to investigate the oral microbiome of AD 
patients and found an increase in the abundance of oral bacteria 
like Porphyromonas gingivalis in AD patients compared to healthy 
controls. Porphyromonas gingivalis is known to produce amyloid 
beta, a key pathological feature of AD, and its presence in the brain 
has been linked to an increased risk of developing AD [4,10,55,67]. 
These findings suggest that SCS can be a valuable tool for identifying 
specific microbial species involved in AD. However, more research is 
needed to confirm these results and to elucidate the mechanisms by 
which these microbial species contribute to AD pathogenesis.

Single-cell sequencing (SCS) has emerged as a powerful technique 
for identifying specific microbial species involved in Alzheimer’s 
disease (AD). Several recent experimental studies have utilized 
SCS to investigate the dysbiosis of the gut and oral microbiomes in 

AD patients [65]. There is an increased abundance of several pro-
inflammatory bacterial species, such as Escherichia coli, Shigella 
flexneri, and Ruminococcus torques, in AD patients compared to 
controls [60]. Furthermore, AD patients showed a reduced abundance 
of anti-inflammatory bacterial species, including Faecalibacterium 
prausnitzii and Eubacterium rectale [64,66]. These findings 
suggest that gut dysbiosis and inflammation may play a role in the 
development and progression of AD [65]. Soreq et al., investigated 
the oral microbiome of AD patients and healthy controls using SCS 
and they found that AD patients had a significantly higher abundance 
of several oral bacterial species, including Actinomyces naeslundii, 
Tannerella forsythia, and Porphyromonas gingivalis, compared to 
controls [23,54]. Porphyromonas gingivalis is known to produce 
amyloid beta, a key pathological feature of AD, and its presence in the 
brain has been linked to an increased risk of developing the disease. 
These findings suggest that the oral microbiome may also contribute 
to AD pathogenesis [17,60]. Taken together, these studies demonstrate 
the potential of SCS to identify specific microbial species involved in 
AD and provide important insights into the dysbiosis of the gut and 
oral microbiomes in AD patients [65].

1.4. Limitations and Challenges in Using Single-cell Sequencing 
to Study Microbial Infections in Alzheimer’s Disease
Single-cell sequencing (SCS) is an effective tool for exploring 
microbial infections in Alzheimer’s disease (AD). However, several 
challenges can arise when using this technique. These challenges 
include limited sensitivity, difficulty in distinguishing microbial 
species, lack of reference databases, contamination, cost, and sample 
size and diversity [Figure 4]. These challenges can impact the quality 
of SCS data and, therefore, the accuracy of microbial identification 
in AD. To address these challenges, researchers can use various 
strategies. For example, they can use FISH or immunofluorescence 
to identify microbial cells before SCS, which can improve the 
sensitivity of the technique. In addition, bioinformatics tools such as 
metagenomics analysis and marker genes can assist in the identification 
of microbial species. Researchers can also use negative controls to 
monitor contamination during sample preparation and sequencing, 
and they can consider pooling cells from multiple samples to reduce 
costs. Overall, while SCS has limitations, careful experimental design, 
analytical approaches, and the use of emerging technologies can help 
overcome these challenges and provide valuable insights into the 
microbial communities in AD.

1.5. Limited Sensitivity
Single-cell sequencing (SCS) requires high-quality RNA from 
individual cells, which can be challenging to obtain from infected 
tissues. In addition, some microbes may be present at low frequencies, 
making their detection through SCS difficult. Researchers can 
address this limitation using techniques such as fluorescence in situ 
hybridization (FISH) or immunofluorescence to visualize microbial 
cells before isolating them for SCS. Moreover, emerging technologies 
such as droplet-based SCS or single-nucleus RNA sequencing 
(snRNA-seq) can improve the sensitivity of SCS by enabling the 
analysis of larger numbers of cells. For instance, in a study by [23,68], 
the researchers used FISH to increase the microbial cell frequency in 
the oral cavity of patients with periodontitis. Brase et al. conducted 
a single-nucleus RNA sequencing (snRNA-seq) study to investigate 
gene expression changes in Alzheimer’s disease [69]. The researchers 
detected differences in gene expression between Alzheimer’s patients 
and healthy controls despite low-quality RNA samples.
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1.6. Difficulty in Distinguishing Microbial Species
SCS can generate vast amounts of data, and analyzing this data to 
identify specific microbial species can be challenging. Furthermore, 
some microbes may have similar genomic sequences, making it 
difficult to differentiate them from one another. Researchers can tackle 
this issue by using bioinformatics tools such as metagenomics analysis, 
which compares the SCS data to reference databases to identify 
microbial species. In addition, researchers can use complementary 
techniques such as shotgun metagenomics or 16S rRNA sequencing 
to obtain more information on the microbial community [70]. For 
example, Lloyd-Price et al. used metagenomics analysis to investigate 
the gut microbiota of patients with inflammatory bowel disease [71].

1.7. Lack of Reference Databases
Some microbial species are not yet well-characterized, and there may be 
limited information available in reference databases, which can make it 
difficult to assign taxonomic identities to microbial sequences identified 
using SCS. To address this limitation, researchers can use tools such 
as Kraken, which uses k-mer analysis to identify microbial species, or 
MetaPhlAn, which uses marker genes to identify microorganisms [72,73]. 
In addition, researchers can create custom reference databases for their 
specific study systems. For example, in a study by Rieder et al. (2023), 
the researchers developed a custom reference database to investigate the 
skin microbiome of patients with atopic dermatitis [74].

1.8. Contamination
Contamination of samples with environmental or laboratory 
microbes can result in false-positive results. To minimize the risk of 
contamination, researchers must carefully design experiments and 
analyze the data. Negative controls, such as sterile water, can be 
used to monitor for contamination during sample preparation and 
sequencing. Computational tools such as Decontam can identify 
and remove potential contaminants from SCS data. For example, 
Gryaznova et al. used negative controls and Decontam to investigate 
the microbial community in the vaginal tract of pregnant women [75]. 
Bao et al. used negative controls and computational tools to investigate 
the oral microbiota of patients with periodontitis. The study identified 
several microbial species associated with periodontitis, such as 

Porphyromonas gingivalis, and distinguished true bacterial cells from 
potential contaminants [18,54]. Incomplete digestion of genomic 
DNA (gDNA) during total RNA extraction, the presence of doublets 
or multiplets (multiple cells grouped together), ambient contamination 
from nucleic acids released by dying cells, and the inclusion of cell-
free mRNA (ambient RNA) can all introduce confounding factors. 
In addition, the infiltration of normal cells surrounding tumors can 
contaminate expression data obtained from tumor samples. Vigilance 
against these contamination sources is crucial for accurate scRNA-
seq analysis. Droplet-based single-cell RNA-seq (scRNA-seq) data 
often suffer from ambient contamination due to nucleic acid material 
from deceased cells. This material mixes into the buffer and is co-
encapsulated with cells, reducing the signal-to-noise ratio [76].

Ambient RNA contamination diminishes sequencing read depth 
and introduces a misleading signal, obscuring biological insights. 
Tissue dissociation in single-cell suspensions is a known source 
of contamination. Various strategies exist, such as van der Wijst 
et al.’s collagenase protocol for gut mucosal biopsies. While these 
protocols enhance cell viability, they neglect ongoing stresses post-
dissociation. Single cells in suspension are prone to death, prompting 
the development of single-nucleus RNA-seq (snRNA-seq) for death-
prone tissues. However, isolated nuclei carry cytoplasmic RNA and 
ribosomes, and lysis buffers may cause RNA leakage. Droplet-based 
approaches often overlook the impact of fluidic technologies [77-80]. 
DecontX introduces an innovative Bayesian approach for precise 
estimation and elimination of contamination in individual cells. It 
successfully forecasts contamination levels in mixed mouse-human 
datasets and rectifies abnormal expression of marker genes in PBMC 
datasets [81]. Introducing SoupX, a cutting-edge solution designed to 
eliminate ambient RNA interference in droplet-based single-cell RNA 
sequencing endeavors. With versatile applications, its implementation 
enhances the biological relevance of both current and forthcoming 
datasets [82]. In the realm of single-cell RNA sequencing (scRNA-
seq), several robust tools play pivotal roles in addressing contamination 
and enhancing data quality. SoupX stands out as a versatile solution 
adept at eliminating ambient RNA interference, thereby significantly 
improving the biological relevance of scRNA-seq datasets. In 
addition, Scrublet proves invaluable in identifying and filtering out 
both ambient RNA and doublets, contributing to heightened data 

Figure 4: Limitations and challenges associated with Single-cell sequencing.
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accuracy [83]. The tool DoubletFinder specializes in identifying and 
flagging potential doublets within scRNA-seq data, ensuring the purity 
of single-cell populations. For tackling broader issues such as batch 
effects and unwanted variation, RUV-III emerges as a powerful tool, 
effectively reducing non-biological sources of variability and thus 
enhancing data quality [84,85]. Moreover, DecontX plays a crucial 
role in detecting and removing contaminating cell types, contributing 
to the specificity of scRNA-seq data by eliminating unwanted cellular 
elements. Incorporating these tools into scRNA-seq workflows equips 
researchers with comprehensive solutions for effective preprocessing, 
ensuring the reliability and accuracy of subsequent analyses [81]. 
The presence of cell doublets (two cells sequenced as one) and 
contamination with ambient RNA can confound the interpretation of 
scRNA-seq data. In the realm of single-cell RNA sequencing (scRNA-
seq), the emergence of doublets arises when two cells are inadvertently 
combined in a single reaction volume. These doublets, although 
visually resembling real cells, introduce a significant challenge in 
scRNA-seq data analysis. While various computational techniques 
aim to identify doublets in scRNA-seq data, the absence of thorough 
benchmarking across these methods complicates the selection process 
for researchers seeking suitable approaches for their analyses [86].

1.9. Cost
The significant expense associated with single-cell RNA sequencing 
(scRNA-seq) poses a notable challenge in genomics. The intricacies 
of scRNA-seq experiments, including library preparation, sequencing, 
and data analysis, contribute to high costs. Specialized equipment, 
reagents, and skilled personnel further inflate expenses, limiting 
the scope of studies. Addressing cost challenges is vital for broader 
access to scRNA-seq, promoting research in single-cell genomics, 
and advancing understanding of cellular heterogeneity and gene 
expression. Optimization of protocols, cost reduction in reagents, 
and the development of more economical platforms are essential for 
overcoming this obstacle and democratizing access to scRNA-seq 
benefits [87-90]. SCS is a relatively expensive technique compared 
to other sequencing methods, which may make it impractical for some 
research groups or projects. However, the cost of SCS has decreased 
over time, and new technologies such as droplet-based SCS have 
reduced the cost per cell [68]. Researchers can also consider pooling 
cells from multiple samples to reduce the overall cost. For example, 
pooled cells from multiple soil samples and used droplet-based SCS 
to investigate the diversity of microbial species in the soil. Droplet-
based single-cell RNA sequencing is used to investigate the microbial 
communities in the lungs of patients with cystic fibrosis. The study 
identified specific microbial species associated with disease severity, 
such as Pseudomonas aeruginosa, at a lower cost than traditional SCS 
methods [68,91].

1.10. Sample Size and Diversity
Single-cell RNA sequencing (scRNA-seq), a transformative 
technology for exploring cellular heterogeneity, grapples with two 
major limitations: restricted sample size and inadequate diversity. 
Limited starting material poses challenges in detecting subtle gene 
expression differences and understanding biological variability, 
potentially compromising statistical power and result in reproducibility. 
In addition, scRNA-seq may inadvertently underrepresent certain 
cell types due to biases in isolation and profiling techniques, 
hindering a comprehensive understanding of the cellular landscape. 
To mitigate these issues, researchers can consider pooling samples, 
integrating multiple datasets, improving cell isolation techniques, 

and standardizing protocols. These efforts are crucial for enhancing 
statistical robustness, ensuring broader applicability of findings, and 
fully realizing the potential of scRNA-seq in elucidating the intricacies 
of biological systems. Soreq et al. conducted single-cell RNA-Seq 
analysis on frontal cortex samples obtained from two individuals 
with Alzheimer’s disease (AD) and two control subjects. Despite the 
limited dataset, the study reveals heightened levels of cell-specific 
markers associated with glial cells in Alzheimer’s samples compared 
to controls. The study’s design, limited by a single time point and 
a small sample size, presents challenges in determining whether 
the observed alterations signify upstream events in the disease’s 
pathogenesis or downstream consequences of neurodegeneration. In 
addition, the analysis identified an increased frequency of microglia, 
astrocytes, and oligodendrocytes, consistent with previous findings 
in AD reported in genome-wide transcriptome studies. However, the 
precise temporal positioning of these changes in relation to disease 
progression—whether they are upstream or downstream—remains 
undetermined. This uncertainty represents a potential limitation in 
interpreting the study’s findings [25].

1.11. Low RNA Content and Amplification Bias
Single cells contain minimal amounts of RNA, making it challenging to 
obtain sufficient material for sequencing. In addition, the amplification 
step introduces biases, leading to a distorted representation of gene 
expression profiles. Amplification bias may result in the over-
representation of highly expressed genes and the loss of information 
from lowly expressed genes [92,93]. In single-cell RNA sequencing 
(scRNA-seq), low RNA count refers to the challenge of obtaining 
reliable gene expression profiles due to limited RNA content in 
individual cells. This limitation can arise from various factors and 
impact the accuracy of downstream analyses. To address and identify 
low RNA counts in scRNA-seq data, several tools and procedures are 
employed. Tools such as Scater and Seurat [44,94] offer functionalities 
for quality control, including the identification of cells with low 
RNA counts. The identification process involves analyzing gene 
expression distributions, examining library size or total counts per 
cell, and identifying genes with consistently low expression. Statistical 
metrics, like median absolute deviation (MAD) or Z-scores, are also 
employed to flag cells with significantly different expression profiles. 
Incorporating these tools and procedures into scRNA-seq analyses 
enables researchers to pinpoint cells with low RNA counts, facilitating 
improved quality control and enhancing the reliability of downstream 
biological interpretations. In scRNA-seq analysis, the initial step 
involves eliminating unlikely, intact individual cell barcodes. For high-
throughput methods, a crucial stage is filtering out non-representative 
cell barcodes. One approach is to set a dataset-specific threshold based 
on the minimum number of UMIs required for considering a barcode as 
a cell. Alternatively, tools like EmptyDrops estimate background RNA 
levels in empty wells or droplets, identifying cell barcodes deviating 
significantly from the background and indicating cell presence. This 
strategy detects cell types with lower RNA content compared to others 
in the sample [95,96]. When analyzing samples with high ambient 
RNA percentages, DropletQC may overlook some damaged cells and 
empty droplets. However, these can be detected by their low RNA 
content and flagged using a minimum UMI threshold. It is advised 
to use DropletQC alongside tools like EmptyDrops to eliminate most 
cell barcodes before identifying any remaining damaged cells or cell-
free droplets. The DropletQC package includes separate functions 
for calculating the nuclear fraction, identifying empty droplets, and 
detecting damaged cells [95,97].
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Amplification bias in single-cell RNA sequencing (scRNA-seq) is 
a notable challenge as it distorts the accurate representation of gene 
expression, especially in scenarios with limited input material. This 
bias introduces errors during the identification of expressed genes, 
compromising data integrity. To counteract this issue, various tools 
and strategies come into play. Duplex sequencing (DuplexSeq) 
mitigates PCR-induced errors, enhancing precision. Unique 
molecular identifiers (UMIs) employ distinctive barcodes before 
amplification for accurate quantification, facilitated by tools such 
as UMI-tools. The identification of genome regions with reduced 
coverage, indicative of bias, is accomplished through allelic dropout 
analysis (ADS-seq). Moreover, incorporating external RNA control 
consortium (ERCC) spike-ins during library preparation enables the 
assessment and correction of amplification bias. The comprehensive 
identification procedure involves pre-processing steps, UMI 
handling, potential duplex sequencing, ERCC spike-in analysis, 
allelic dropout analysis, and the application of statistical methods for 
quantification and bias correction. Integrating these methodologies 
into the analytical pipeline ensures precise evaluation of gene 
expression in scRNA-seq, significantly enhancing the reliability of 
downstream analyses [98-102].

1.12. Cell Viability and Isolation
Isolating single cells while maintaining their viability is a delicate 
process. Cell stress or death during isolation can introduce artifacts in 
gene expression profiles. Effectively disassembling intricate systems 
like tissues or multicellular spheroids poses a considerable technical 
challenge. The use of mechanical or enzymatic approaches can result in 
cellular damage and may influence gene expression when executed too 
forcefully or for prolonged durations [103]. Hence, the identification of 
an appropriate dissociation methodology is of paramount importance. 
Regardless of the chosen method, three key criteria must be met 
for successful tissue dissociation: (1) achieving high cell recovery; 
(2) preserving cell integrity and functionality; and (3) employing a 
straightforward and replicable technique. In the context of techniques 
such as fluorescent-assisted cell sorting (FACS) and single-cell RNA 
sequencing (scRNA-seq), it is essential to convert microtissues into 
a single-cell suspension without compromising cellular integrity and 
minimizing alterations in gene expression. As a result, a predominant 
approach in research has involved employing enzymatic dissociation 
to investigate individual cell populations within the central nervous 
system (CNS) at a single-cell resolution. Nevertheless, recent findings 
in diverse tissues and cell types have shed light on potential artifacts 
arising from enzymatic digestion processes [104-106]. While two 
prior single-cell RNA sequencing (scRNA-seq) studies focused on the 
brain, the absence of biological replicates and/or limited representation 
of cells from less common types, such as microglia, has hindered the 
comprehensive, reproducible comparative analysis of the dissociation 
signature in the CNS [107,108].

1.13. Dropout Events
scRNA-seq can suffer from “dropout events,” where certain 
genes are not detected in individual cells, leading to incomplete 
expression profiles [109]. scRNA-seq investigations frequently 
yield substantial datasets, encompassing comprehensive gene 
expression measurements across thousands or more individual cells. 
This abundance of data poses significant computational challenges 
in analyzing and deciphering the information. Numerous factors 
contribute to the complexity of computational analysis for scRNA-
seq data, including its high dimensionality, inherent measurement 

noise, detection limits, and the imbalanced size ratio between rare and 
abundant cell populations. Among the complexities, a notable feature 
influencing these challenges is the phenomenon termed “dropout,” 
where a gene exhibits a low or moderate expression level in one cell 
but remains undetected in another cell of the same type. These dropout 
occurrences stem from factors such as limited mRNA quantities 
in individual cells, inefficient mRNA capture, and the inherent 
stochasticity of mRNA expression. Consequently, the scRNA-seq 
data frequently manifest as highly sparse, with an overabundance of 
zero counts that renders it zero-inflated, capturing only a fraction of 
each cell’s transcriptome [110,111].

Due to the limited initial material available, single-cell RNA sequencing 
(scRNA-seq) encounters challenges associated with low capture 
efficiency and elevated dropouts, as highlighted by Haque et al. in 2017. 
In contrast to bulk RNA-seq, scRNA-seq yields data characterized by 
increased noise and variability. The presence of technical noise and 
biological variations, such as stochastic transcription, poses significant 
hurdles for the computational analysis of scRNA-seq data [89]. Single-
cell RNA sequencing (scRNA-seq) data often exhibits missing values 
or dropouts, resulting from unsuccessful amplification of original 
RNAs. The occurrence of dropout events in scRNA-seq is influenced 
by the protocol used and correlates with the number of sequencing 
reads per cell [112]. These dropouts contribute to increased cell-to-
cell variability, impacting the signal for each gene and complicating 
the detection of gene-gene relationships. Consequently, downstream 
analyses are significantly affected, as a considerable portion of 
genuinely expressed transcripts may go undetected in scRNA-seq. To 
address this issue, imputation emerges as a valuable strategy to replace 
missing data by introducing substituted values. It is worth noting that 
existing imputation methods for bulk RNA-seq data may not directly 
apply to scRNA-seq data [113].

1.14. Data Analysis Complexity
The intricacy of data analysis in single-cell RNA sequencing (scRNA-
seq) stems from multiple factors. The process generates extensive 
datasets with individual cell gene expression profiles, resulting in 
high-dimensional data that demands advanced computational methods 
for interpretation. Technical challenges, such as RNA molecule 
capture efficiency and the presence of ambient RNA, contribute noise 
and variability to scRNA-seq data, requiring meticulous handling for 
accurate downstream analysis. Furthermore, the inherent heterogeneity 
in cell populations adds another layer of complexity. Advanced 
clustering and classification algorithms are necessary to identify and 
characterize distinct cell types or states within the dataset. In addition, 
understanding gene expression dynamics at the single-cell level 
involves employing specialized methods to model temporal patterns.

To address these challenges, researchers adopt a multi-step approach. 
Initial steps include preprocessing raw data, utilizing techniques 
like principal component analysis (PCA) and uniform manifold 
approximation and projection (UMAP) for dimensionality reduction, 
and employing clustering to delineate cell types or states [114,115]. 
Subsequent analysis involves tasks like differential expression 
analysis, trajectory reconstruction, and integrating multiple datasets. 
Visualization tools, such as ggplot2 and interactive platforms, play 
a crucial role in effectively presenting results. Effectively managing 
the complexity of data analysis in scRNA-seq requires staying 
abreast of evolving tools, leveraging parallel computing resources, 
collaborating with experts, and ensuring thorough documentation for 
reproducibility. These efforts contribute to continual enhancements in 
the methodologies employed for scRNA-seq analysis.
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1.14.1. Dynamic nature of single cells
Single cells are dynamic, and their gene expression profiles can change 
rapidly. Capturing this dynamic nature poses a challenge in obtaining 
a snapshot that accurately represents the cell’s state. The concept of 
’cell state transition’ encompasses the dynamic changes cells undergo 
over time. This phenomenon is integral to embryonic development, 
where cells differentiate progressively. In addition, it plays a key role 
in maintaining tissue function during homeostasis and repair, replacing 
damaged cells. An understanding of these transitions is pivotal, as 
various disorders, spanning developmental issues to cancer, often 
result from abnormal shifts in cell states [116].

1.14.2. Batch effects
Variability introduced during different experimental batches can 
confound the interpretation of results. Batch effects in single-cell 
RNA sequencing (scRNA-seq) represent systematic variations in gene 
expression resulting from technical disparities between batches of 
samples processed in distinct experimental runs. These variations can 
obscure genuine biological signals, posing a challenge to distinguishing 
between true cellular differences and technical artifacts. Addressing 
batch effects is essential for the accurate interpretation of scRNA-seq 
data. Strategies to mitigate these effects include randomization and 
balancing in experimental design, normalization techniques such as 
global scaling and library size normalization, integration methods 
like Harmony and ComBat, as well as pseudo-bulk analysis. Utilizing 
quality control measures and filtering low-quality cells and features 
further aids in minimizing the impact of batch effects. Continuous 
advancements in computational methods contribute to enhancing the 
robustness of batch correction in scRNA-seq analyses [117-119]

1.15. Heterogeneity of Alzheimer’s Disease (AD) Across Diverse 
Populations and Disease Subtypes
The applicability of insights derived from single-cell RNA sequencing 
(scRNA-seq) in Alzheimer’s disease research depends on addressing 
the challenges associated with diverse populations and disease 
subtypes [120,121]. scRNA-seq has proven valuable in exploring 
the diversity of microglia within the human brain, addressing the 
challenge of heterogeneity. Recent examinations using single-cell 
RNA sequencing (scRNA-seq) on microglia in the human brain have 
revealed distinct variations within the microglial population. Sankowski 
et al. identified eight distinct clusters of microglia in the human brain, 
labeled C1–C3, C5–C9, each exhibiting unique gene expressions. 
They investigated the expression of these cluster-specific genes within 
myeloid cell populations using our scRNA-seq composite dataset 
[122-124]. ScRNA-seq offers a significant benefit by impartially 
pinpointing cellular subgroups within diverse cell populations. 
The intricate structure of tissues is intricately tied to their function, 
underscoring the vital importance of accurately discerning cell types 
and their frequencies [125]. Single-cell RNA-Seq offers the ability 
to uncover transcript heterogeneity at the single nucleotide level and 
identify gene expression diversity within individual cells. In contrast, 
analyzing cell populations provides only an averaged gene expression 
level. Recent research highlights that pooling results from 30 to 100 
single cells can effectively reconstruct the averaged gene expression 
observed in the entire cell population, addressing stochastic gene 
expression heterogeneity. While our findings align with this concept, it 
is important to note that pooling just five cells from diverse treatments 
or conditions is insufficient for accurately representing the averaged 
expression of populations [126,127]. scRNA-seq information displays 
notable diversity, suggesting the presence of organized low-rank 
submatrices. In addition, a prior investigation indicated that variations 

in gene expression significantly influence dropout occurrences [111]. 
An expanding body of evidence reveals Alzheimer’s disease (AD) 
as a complex condition, diverging from traditional perspectives. 
Approximately one-third of clinically diagnosed AD patients lack 
Aβ accumulation and postmortem cases show cognitive normality. 
In sporadic late-onset AD, individuals may possess unique genetic 
variations such as CLU, TREM2, and APOE, heightening disease risk. 
The interplay between these genetic factors and disease progression 
remains unclear. Predicting AD progression is daunting, emphasizing 
significant heterogeneity in patient outcomes [128-130]. While single-
cell omics have shown significant advancements, it may fall short in 
comprehending cellular diversity. Analyzing differential expression 
in scRNA-seq data to pinpoint cell-specific genes provides insights, 
but decoding cellular identity solely from gene regulation lists proves 
challenging. This difficulty arises because gene functions and the 
impact of disease-related variants hinge on their interactions within 
the cellular environment, emphasizing the importance of considering 
these relationships for a comprehensive understanding [131,132]. 
Alzheimer’s disease is recognized for its multifaceted nature, both 
clinically and biologically, prompting investigations into gene 
expression patterns at the cellular level using scRNA-seq. Ensuring 
the generalizability of these findings requires a nuanced understanding 
of how genetic, environmental, and lifestyle factors contribute to the 
disease across diverse populations. Likewise, the existence of various 
Alzheimer’s subtypes, such as early-onset and late-onset forms, as 
well as distinctions based on protein aggregates like amyloid-beta and 
tau, introduces complexities in interpreting scRNA-seq results across 
different subgroups. Technical intricacies in laboratory procedures and 
bioinformatics analyses, coupled with the imperative for validation 
in independent cohorts, shape the reliability and generalizability of 
scRNA-seq outcomes. Incorporating multi-omics data, encompassing 
genomics and proteomics, is a common strategy, demanding careful 
integration to ensure a cohesive interpretation across diverse data 
types. Continuous collaboration and advancements within the research 
community contribute to refining the uniqueness and applicability of 
scRNA-seq insights in understanding Alzheimer’s disease.

1.16. Potential Future Directions for Using Single-cell 
Sequencing to Investigate Microbial Infections
Single-cell sequencing is a cutting-edge technology that enables 
the analysis of individual cells within a complex and heterogeneous 
population, providing novel insights into the genetic and phenotypic 
diversity of microbial communities. In the context of Alzheimer’s 
disease, there are several potential future directions for using single-
cell sequencing to investigate microbial infections.

•	 Identification of microbial communities: Single-cell sequencing 
(SCS) can assist in identifying microbial species and strains 
present in Alzheimer’s disease (AD) brains. By studying the 
composition and dynamics of microbial communities, researchers 
can gain a better understanding of the role these communities 
play in AD pathogenesis.

•	 Investigation of host-microbe interactions: SCS can be used to 
investigate the interactions between microbial communities 
and host cells in AD brains, identifying genes and pathways 
activated in response to microbial infection and their role in AD 
pathogenesis.

•	 Identification of novel microbial targets: SCS can help identify 
specific microbial species or strains associated with AD 
pathology, enabling the development of therapies that target these 
microbes directly.
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•	 Evaluation of microbial therapies: SCS can evaluate the efficacy 
of microbial therapies in AD by monitoring the effects of 
interventions on microbial communities within the AD brain.

•	 Single-cell sequencing can be utilized to identify rare or 
uncultivable microorganisms that may be present in Alzheimer’s 
disease brains but are difficult to detect using traditional culture-
based methods. This approach has been successfully employed 
in other diseases such as sepsis and pneumonia to identify novel 
bacterial and viral species, which could also be applicable to 
Alzheimer’s disease.

•	 Single-cell sequencing can also provide a high-resolution 
characterization of the microbial communities present in 
Alzheimer’s disease brains, enabling the identification of specific 
microbial species or strains that are associated with the disease 
and elucidating their functional roles within the community.

•	 Single-cell sequencing can shed light on the interactions between 
microorganisms and host cells in Alzheimer’s disease brains, 
offering insights into the mechanisms by which microorganisms 
contribute to disease pathology and identifying potential targets 
for therapeutic intervention.

•	 The ethical considerations associated with single-cell sequencing 
(SCS) technology in the context of Alzheimer’s disease research 
involve several key aspects. Researchers need to prioritize 
informed consent, ensuring that individuals contributing 
biological samples are fully aware of the potential risks and 
benefits. Rigorous data anonymization is crucial to prevent the 
identification of participants and protect their privacy. Robust data 
security measures, including encryption and access controls, are 
essential to safeguarding sensitive information. Transparent data-
sharing policies should be established, specifying who has access 
to the data and for what purposes, while community engagement 
ensures inclusivity and consideration of diverse perspectives. 
Long-term data governance structures and regular ethics review 
board approval contribute to ongoing oversight and adherence to 
ethical standards. Overall, these measures collectively promote 
the responsible and ethical use of SCS technology in Alzheimer’s 
disease research [133-135].

1.17. Ethical Considerations Associated with Single-cell 
Sequencing (SCS) Technology in the Context of Alzheimer’s 
Disease
The ethical considerations associated with single-cell sequencing (SCS) 
technology in the context of Alzheimer’s disease research involve 
several key aspects. Researchers need to prioritize informed consent, 
ensuring that individuals contributing biological samples are fully 
aware of the potential risks and benefits. Rigorous data anonymization 
is crucial to prevent the identification of participants and protect their 
privacy. Robust data security measures, including encryption and 
access controls, are essential to safeguarding sensitive information. 
Transparent data sharing policies should be established, specifying 
who has access to the data and for what purposes, while community 
engagement ensures inclusivity and consideration of diverse 
perspectives. Long-term data governance structures and regular ethics 
review board approval contribute to ongoing oversight and adherence 
to ethical standards. Overall, these measures collectively promote the 
responsible and ethical use of SCS technology in Alzheimer’s disease 
research [133-135]. Neuroscience research generates extensive brain 
data that is crucial for advancements and medical solutions. However, 
managing this data involves navigating diverse jurisdictions, formats, 
and regulations. The governance of brain data has become imperative, 
leading to the establishment of diverse structures to uphold data 

quality, availability, and ethical considerations. Despite the recognition 
of ethical and legal principles in data governance, a standardized 
framework for managing brain data remains unclear due to evolving 
practices and principles. Authors can follow the cited article for more 
about neuroethics [135-139].

2. CONCLUSION

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized 
by the buildup of amyloid plaques and neurofibrillary tangles in the 
brain. Despite extensive research, the causes of AD remain poorly 
understood. However, recent evidence suggests that microbial 
infections may contribute to the development and progression of AD. 
Single-cell sequencing (SCS) technology has emerged as a powerful 
tool for investigating the relationship between microbial infections and 
AD at a high resolution. In this review article, we explore the latest 
research on the role of SCS in studying complex microbial communities 
in AD. By enabling the identification and characterization of specific 
microbial species and their interactions with host cells in AD brains, 
SCS has provided novel insights into the potential involvement of 
microbial infections in AD pathogenesis. In addition, SCS has the 
potential to advance the diagnosis and treatment of AD by uncovering 
new therapeutic targets. Nevertheless, the challenges, limitations, 
and ethical and translational considerations of SCS technology must 
be addressed to ensure its full potential is realized. In conclusion, 
SCS has significant potential in deepening our understanding of the 
complex microbial communities in AD and their potential involvement 
in disease pathogenesis and could ultimately lead to the development 
of new therapies and preventive measures for this devastating disease.
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