Porphyridium sp. Microalgae as a source of polysaccharides

Yulia-Danae Boychenko*, Ekaterina Budenkova, Nina Kostyushina, Olga Babich*, Egor Kashinskikh

Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia

ARTICLE INFO

Article history:
Received on: August 17, 2023
Accepted on: October 09, 2023
Available online: ***

Key words:
Microalgae, Porphyridium, Polysaccharides, EPS, Microalgae exocarbs, Factor experiment.

ABSTRACT

Polysaccharides (Ps) are valuable raw materials for a number of industrial sectors. Obtaining Ps from microalgae is both convenient and environmentally friendly. Red microalgae are potential producers of Ps because many of the representatives of this group produce a large number of exo Ps that perform protective functions for cells. This study compared three members of the Porphyridium genus for their ability to produce exocarbohydrates in response to nutrient medium chemical composition and lighting conditions. The experiments revealed that strain P-293 compared to P-271 and P-519 produced the highest amount of exocarbohydrates (2.25 g/g on average) under nitrogen source deficiency and sodium chloride excess (0.62 and 18.78 g/L, respectively). Under red-light conditions, strains P-293 and P-519 produce statistically significantly more exocarbohydrates compared to white and blue light. Strain P-271 produces more exocarbohydrates when cultivated with white light illumination.

1. INTRODUCTION

Marine microalgae are widely used as potential sources of various valuable compounds [1]. Among the various products produced by microalgae, polysaccharides (Ps) are important biomacromolecules [2]. The advantage of microalgae Ps is that it is a renewable material, environmentally friendly, non-toxic and biodegradable, and available at a relatively low cost [3,4]. There are two types of Ps that microalgae produce. Some are stored in the cytoplasm, while others are secreted into the extracellular space and called exopolysaccharides (EPS) [2].

Relatively few studies have been found that provide a comparison of Porphyridium sp. species in relation to industrial applications as sources of EPS [5]. Among microalgae used in biotechnological industrial applications, red microalgae belonging to the genera Porphyridium and Rhodella are gaining interest as sources of valuable compounds [6-8]. Porphyridium species are known as sources of sulfated Ps, polyunsaturated fatty acids (arachidonic and eicosapentaenoic acids), phycobiliprotein, phycoerythrin, and as a source of protein [9-12]. Sulfated polysaccharides of red microalgae have attracted increasing attention due to their unique rheological and biological activities [13-15]. These Ps have a high molecular weight (5–7 × 106 Da) [4]. They are thought to have developed through an evolutionary process of adaptation to the effects of salt stress [4].

In the 21st century, interest in bioactive metabolites of marine algae has increased significantly, and many compounds, including microalgae exopolysaccharides, are considered to be promising in terms of their applications in both medicine and aquaculture [16,17]. There are currently numerous works devoted to the biological activity of exopolysaccharides [18,19]. However, they do not lead to significant progress in this field of knowledge because they are predominantly descriptive, are not supported by knowledge of the physiology and biochemistry of specific strains of exopolysaccharide-producing microalgae, and have geographical limitations. In fact, most studies on the applied significance of exopolysaccharides are conducted with two or three Far Eastern (rarely Atlantic) algae species, leaving the richest biological resource of other regions unattended. To move to a qualitatively new level in the study of this matter, a more systematic approach is required. It is necessary to include in the analysis representatives of at least three different strains of the same taxonomic group of microalgae (the most interesting in terms of exopolysaccharide production are Porphyridium strains since it is known that they are cultivated under different conditions and synthesize different types of exopolysaccharides [20,21]), to study in detail the structure of molecules included in the extracts of exopolysaccharides of different origins. Implementing research on microalgae exopolysaccharides of various strains will not only contribute significantly to fundamental biology but will also contribute to the development of relevant branches of applied sciences [22].

The study aimed to comparatively investigate the ability to produce exocarbohydrates (exopolysaccharides) of three Porphyridium sp. strains (Porphyridium cruentum (Ag.) Näg., Porphyridium sordidum Geitl., and Porphyridium sp. Näg.), depending on the chemical composition of the nutrient medium and type of light. The problem of exopolysaccharide production based on bioprocessing of Porphyridium biomass has never been fully solved and continues to be
2. MATERIALS AND METHODS

The study uses red microalgae of the genus Porphyridium (P. cruentum (Ag.) Näg., P. sordidum Geitl., Porphyridium sp. Näg., which were designated as P-271, P-293, and P-519, respectively) from the collection of microalgae and cyanobacteria (K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences). Porphyridium colonies are blood-red or red-brown, incrusting, and have an indeterminate outline. The cells in the colonies are globular. Chloroplast is axial, stellate, with one central pyrenoid. Reproduction is vegetative by simple cell division into two or more daughter cells, sometimes by akinetes. Three microalgae strains were compared due to differences in growth and biomass development rates, cultivation parameters, nutrient medium composition, and accumulation of biologically active substances [21]. The appearance of red microalgae cultures is demonstrated in Figure 1.

Porphyridium cells are spherical or obovate, 5–16 μm in diameter, solitary or grouped in irregularly shaped colonies in a loose mucous matrix, and have no flagella. The cells have no cell wall and are surrounded by a sulfurized polysaccharide complex [4,7-10].

The morphological features of the species P. cruentum (Ag.) Näg. (P-271), P. sordidum Geitl. (P-293), and Porphyridium sp. Näg. (P-519) were described. Cultures of all presented microalgae in glass tubes have a rich red-pink color and demonstrated characteristic adhesion or fouling of the flask walls by the cells [Figure 1]. Despite the external similarity of cultures, the morphology and color of cells differ. Thus, P-271 cells are spherical, light pink, and surrounded by polysaccharide matrix [Figure 1a]. P-293 cells are obovate and bright pink-purple in color [Figure 1b]. P-519 culture cells are spherical in shape, with distinct cell borders and a stained pyrenoid in the center [Figure 1c].

Microalgae were grown on Brody and Emerson nutrient medium max-1-2 [25], which contains sources of nitrogen, phosphorus, sulfur, macro-, and microelements. Composition of nutrient medium (g/L): KNO_3 – 1.24; KHPO_4 × 3H_2O – 0.655; KCl – 16.04; NaCl – 12.52; KI – 0.05; KBr – 0.05; MgSO_4 × 7H_2O – 2.5; Ca(NO_3)_2 × 4H_2O – 0.25; FeSO_4 × 7H_2O – 0.0249. Micronutrient solution (g/L): H_2BO_3 – 2.86; MnCl_2 × 4H_2O – 1.81; ZnSO_4 × 7H_2O – 0.22; CuSO_4 × 5H_2O – 0.08; MoO_3 – 0.015; NH_4VO_3 – 0.023; K_2Cr_2(SO_4)_3 × 24H_2O – 0.096; NiSO_4 × 7H_2O – 0.048; Na_2WO_4 × 2H_2O – 0.018; Co(NO_3)_2 × 6H_2O – 0.044.

Culturing conditions: Illumination cycle consisted of a light phase (8 h) and dark phase (16 h), periodic stirring (2–3 times per day), the effect of temperature was considered (28 ± 1°C), conical flasks with cotton-gauze stoppers, and sterile conditions. An aquarium lamp (Tetronic LED) that provides red (4350 ± 50 lx) and blue (2450 ± 50 lx) light, and a lamp (LLLED-01 LED light) that provides white light (2150 ± 50 lx) were used to study the effect of illumination color on EPS production by microalgae. White light is a mixture of light of different wavelengths from the violet visible light range (0.42 μm) [26]. For blue light, the reference wavelength of the light filter λ_0 = 473.7 nm. The reflective indices of ZnS and MgF_2 at the reference wavelength took values of 2.3036 and 1.3861, respectively. The bandwidth in such case was in the interval from λ = 307 nm to λ = 735 nm [27]. The red light filter allowed only rays of red light to pass through and absorbed the rest. The intensity of light hitting the microalgae samples was 13 klx [28]. The lamps were placed at a distance of 15 cm from the flasks with microalgae cultures.

The lamps were placed at a distance of 15 cm from the flasks with microalgae cultures. The concentration of exopolysaccharides in the culture fluid was determined by the phenol-sulfuric acid method at OD480. The relative specific EPS concentration (g/g) was calculated as the ratio of the EPS concentration of the culture fluid (g/L) to the cell concentration in the suspension (g/L).

Optimization of the chemical composition of the nutrient medium was carried out using mathematical modeling: A full factorial two-level experiment (FFE). The functions are cellular concentration and specific concentration of EPS. The macrosols included in the nutrient medium were taken as the studied factors: Nitrogen source – KNO_3; phosphorus source – KHPO_4; magnesium source – MgSO_4 × 7H_2O, and chlorine source – NaCl [Table 1].

Microalgae samples (Porphyridium sp. Nag. P-519, P. cruentum P-271, and P. sordidum P-293) were cultivated under sterile conditions in conical and round bottom flasks with cotton-gauze plugs, using nutrient media selected at the previous stage of the study under the following technological parameters: Working temperature of cultivation for microalgae strains Porphyridium sp. Nag. P-519 and P. cruentum P-271 was 25°C; P. sordidum P-293 – 45°C; light/darkness for Porphyridium sp. Nag. P-519 – 16/8 h, for P. sordidum P-293 – 12/12 h, for P. cruentum P-271 – 8/16 h, white light with an intensity of 5000 lx, duration – 21 days [25,26]. The studied microalgae samples were subjected to constant stirring in a thermostated shaker with a rotor speed of 100 rpm during the experiment.
3. RESULTS AND DISCUSSION

The metabolism of microorganisms is unusually sensitive to environmental conditions. Microorganisms are in close contact with the nutrient medium which they inhabit and respond to changes in the set and ratio of its composition. A change in the concentration of any component within the limits that allow microorganism development can significantly affect cell metabolism [Table 1].

Methods of mathematical planning of the experiment are used to identify such a composition of the nutrient medium at which the desired effect (biomass yield and accumulation of certain metabolic products) is observed. Mathematical planning enables the simultaneous study of several factors and quantification of their influence on the production of the target substance [32].

KNO₃, K₂HPO₄ × 3H₂O, MgSO₄ × 7H₂O, and NaCl considered in this work served as a source of nitrogen, phosphorus, magnesium, and sulfur for microalgae, respectively [33]. A fourth factor, sodium chloride concentration, was chosen to optimize the salinity of the nutrient medium [34].

The regression equations were obtained as a result of FFE. These equations are shown in Table 2 and have been formulated while considering the statistical significance of factors and checking the mathematical model for adequacy.

For each of the three strains studied, an inversely proportional relationship between KNO₃ concentration in the nutrient medium and EPS production was found, that is, the lower the KNO₃ concentration, the more EPS produced by the microalgae. It was also found that EPS production by strains P-271 and P-293 was statistically significantly affected by the presence of sodium chloride. For P-271, the relationship is inversely proportional, while for P-293, the relationship is directly proportional.

The FFE results are graphically summarized in Figure 2. The leader in biomass growth is P-271 (Matrix Plan No. 10, 13–15) with a maximum of 0.8 g/L. For strain P-293, variants No. 2, 11, and 14 (0.6 g/L) were the best. With respect to P-519, the initial nutrient medium composition (control) was the best for biomass growth, 0.7 g/L on average.

When evaluating the specific EPS concentration, it was revealed that among the presented strains, strain P-293 is the undisputed leader (2.25 g/g on average) under conditions of nitrogen source deficiency among the presented strains, strain P-293 is the undisputed leader (2.25 g/g on average) under conditions of nitrogen source deficiency (2.0 min).

The metabolism of microorganisms is unusually sensitive to environmental conditions. Microorganisms are in close contact with the nutrient medium which they inhabit and respond to changes in the set and ratio of its composition. A change in the concentration of any component within the limits that allow microorganism development can significantly affect cell metabolism [Table 1].

Methods of mathematical planning of the experiment are used to identify such a composition of the nutrient medium at which the desired effect (biomass yield and accumulation of certain metabolic products) is observed. Mathematical planning enables the simultaneous study of several factors and quantification of their influence on the production of the target substance [32].

KNO₃, K₂HPO₄ × 3H₂O, MgSO₄ × 7H₂O, and NaCl considered in this work served as a source of nitrogen, phosphorus, magnesium, and sulfur for microalgae, respectively [33]. A fourth factor, sodium chloride concentration, was chosen to optimize the salinity of the nutrient medium [34].

The regression equations were obtained as a result of FFE. These equations are shown in Table 2 and have been formulated while considering the statistical significance of factors and checking the mathematical model for adequacy.

For each of the three strains studied, an inversely proportional relationship between KNO₃ concentration in the nutrient medium and EPS production was found, that is, the lower the KNO₃ concentration, the more EPS produced by the microalgae. It was also found that EPS production by strains P-271 and P-293 was statistically significantly affected by the presence of sodium chloride. For P-271, the relationship is inversely proportional, while for P-293, the relationship is directly proportional.

The FFE results are graphically summarized in Figure 2. The leader in biomass growth is P-271 (Matrix Plan No. 10, 13–15) with a maximum of 0.8 g/L. For strain P-293, variants No. 2, 11, and 14 (0.6 g/L) were the best. With respect to P-519, the initial nutrient medium composition (control) was the best for biomass growth, 0.7 g/L on average.

When evaluating the specific EPS concentration, it was revealed that among the presented strains, strain P-293 is the undisputed leader (2.25 g/g on average) under conditions of nitrogen source deficiency among the presented strains, strain P-293 is the undisputed leader (2.25 g/g on average) under conditions of nitrogen source deficiency (2.0 min).
The chemical composition of the exopolysaccharides of Porphyridium strain P-271 is represented by D-xylose, D-glucose, D- and L-galactose, 3-O-methylxylene, 3- and 4-O-methylgalactose, and D-glucuronic acid in approximate molar ratios of 3:1:2.5:0.13:0.13:0.13:0.8. Porphyridium P-293 contains 2-O-methylhexose and 2-O-methylglucuronic acid, whereas the exopolysaccharides of Porphyridium strain P-519 lack these two sugars but contain 2,4-di-O-methylgalactose. Xylose, glucose, and galactose are present in the exopolysaccharides of all three microalgae strains as end groups and 1,3- and 1,4-linked residues, with galactose and glucose also present as 1,3,4-linked or sulfated residues [35].

It is known that an increase in the carbon/nitrogen (C/N) ratio can promote the production of EPS by P. purpureum [21,25]. As the result of this research, factor X3 was used for KNO3, the lower limit was 0.620, the upper limit was 1.860, the control was 1.24, and the step between levels was 0.620. For K2HPO4·3H2O, factor X4 was used, the lower limit was 0.325, the upper limit was 0.975, and the control was 0.650 with a step of 0.325. For MgSO4, factor X5 was used, the lower limit was 1.250, the upper limit was 3.750, and the control was 2.50 with a step of 1.250. For NaCl, factor X6 was used, the lower limit was 0.620, the upper limit was 1.860, the control was 1.24, and the step was 0.620.

The regression equation for P. cruentum P-271 is as follows:
y = 0.515–0.065 × X1–0.060 × X4
For Porphyridium sp. Nag P-519, y = 1.127–0.236 × X4

The regression equation for Porphyridium sp. Nag P-519:
y = 0.086–0.196 × X1 + 0.159 × X4

The regression equation for Porphyridium sp. Nag P-519:
y = 0.086–0.196 × X1 + 0.159 × X4
For Porphyridium sp. Nag P-519, y = 1.127–0.236 × X4

Table 2: Results of a full factorial experiment.

<table>
<thead>
<tr>
<th>Strain of Porphyridium sp.</th>
<th>Regression equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porphyridium cruentum P-271</td>
<td>(y = 0.515 - 0.065 \times X_1 - 0.060 \times X_4)</td>
</tr>
<tr>
<td>Porphyridium sordidum P-293</td>
<td>(y = 0.086 - 0.196 \times X_1 + 0.159 \times X_4)</td>
</tr>
<tr>
<td>Porphyridium sp. Nag P-519</td>
<td>(y = 1.127 - 0.236 \times X_4)</td>
</tr>
</tbody>
</table>

Table 3: Results of intergroup comparison (day 5).

<table>
<thead>
<tr>
<th>Lighting conditions</th>
<th>P-271</th>
<th>P-293</th>
<th>P-519</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW/W</td>
<td>-2.402</td>
<td>0.016*</td>
<td>-2.611</td>
</tr>
<tr>
<td>RW/B</td>
<td>-2.619</td>
<td>0.009*</td>
<td>-2.611</td>
</tr>
<tr>
<td>W/B</td>
<td>-2.619</td>
<td>0.009*</td>
<td>-2.611</td>
</tr>
</tbody>
</table>

The z-value of the criterion and the p-value are given; *- statistical significance of the intergroup difference, RW: illumination with red-white light; W: illumination with white light; B: illumination with blue light

Table 4: Results of regression analysis.

<table>
<thead>
<tr>
<th>Strain</th>
<th>RW</th>
<th>W</th>
<th>P</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-271</td>
<td>0.0003</td>
<td>-0.795**</td>
<td>0.0750</td>
<td>0.472</td>
</tr>
<tr>
<td>P-293</td>
<td>0.0000</td>
<td>0.888**</td>
<td>0.3060</td>
<td>-0.283</td>
</tr>
<tr>
<td>P-519</td>
<td>0.0100</td>
<td>0.643**</td>
<td>0.0000</td>
<td>0.945**</td>
</tr>
</tbody>
</table>

r is the value of the Pearson correlation coefficient, ** is the statistical significance of r; RW is red–white light illumination; W is white light illumination; B is blue light illumination.
increase in cell growth rate, biomass production, and polysaccharide yield [36]. Temperature can affect polysaccharide production in combination with light energy, as it affects nutrient uptake and cell wall structure [37]. The optimum temperature required for culturing microalgae ranges from 15 to 30°C; beyond this temperature range, damage or death of microalgae cells may occur [38].

Blue and red light are known to favor the growth and EPS production of microalgae [39]. Contrarily, blue light (430 nm) was found to be the least beneficial to P. sordidum growth and EPS production in these studies. The light spectrum was also recognized to critically affect the EPS composition of microalgae, as the results showed that both blue (400–500 nm) and red (600–700 nm) light effectively increased the polysaccharide production of *P. cruentum* [40]. The study of light as the main parameter to control the growth and polysaccharide production of *P. cruentum* showed that blue light with wavelengths between 400 and 500 nm can be used to stimulate cell growth and increase polysaccharide production up to 4.63 g/L [41]. There are reports on the effects of light with different wavelengths on polysaccharide production. Blue light was reported to be an effective tool to improve *P. cruentum* cell growth and polysaccharide synthesis [42]. Our findings are consistent with those of other studies [9-35]. The production of exopolysaccharides and other valuable biologically active substances by *Porphyridium* microalgae (P-271, P-293, and P-519) was enhanced when exposed to white, blue, and red light [28].

In comparison to other microalgae exopolysaccharides, the profile of *Porphyridium* (P-271, P-293, and P-519) makes it an alternative source of exopolysaccharides with a high purity index classified as food grade [43]. Exopolysaccharides are also used as active compounds in the medical and cosmetic industries because they have antioxidant [44], antimicrobial, and anticancer properties.

4. CONCLUSION

The obtained results can be succinctly summarized. EPS production by strain P-271 is equally affected by both the chemical composition of the medium (nitrogen and sodium chloride deficiency) and the type of light (white light). The chemical composition of the medium (such as nitrogen and sodium chloride deficiency) had a greater effect on EPS production by strain P-293 compared to the type of light (red-white light), which had a smaller effect. EPS production by strain P-519 is equally affected by the chemical composition of the medium (nitrogen deficiency) and the type of light (white or red-white light). More research in this area is planned to assess the mutual influence of light factors and medium chemical composition on polysaccharide production by red microalgae. The findings of this study will serve as the foundation for a technology for cultivating *Porphyridium* microalgae (P-271, P-293, and P-519) and producing exopolysaccharides that are cost-effective, simple to use, and reproducible in any desired volume. It will enable larger-scale production of high-value-added exopolysaccharides [29].

Microalgae Ps are known to have anti-inflammatory, antibacterial, antiviral, immunomodulatory, and anticarcinogenic activities. More research on polysaccharide production and properties is planned to evaluate microalgae preparations and supplements for lowering blood cholesterol levels and preventing the formation of cholesterol plaques. It is possible to establish intestinal blood flow, populate the intestines with beneficial bacteria, accelerate the elimination of food and chemical mutagens from the body, and much more with the help of microalgae Ps. It will be possible to create products for weight loss, anti-age, sports nutrition, and maintaining a healthy lifestyle using microalgae exopolysaccharides. The plan is to look into the potential of preparations based on microalgae exopolysaccharides to prevent diabetes, hypertension, anemia, peptic ulcers, and other diseases. All of these are future research directions for the Ps obtained in our study.

5. AUTHORS’ CONTRIBUTIONS

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

6. FUNDING

This research was supported by the Ministry of Science and Higher Education of the Russian Federation, contract No. 075-15-2022-245 (int. No. 13.2251.21.0134).

7. CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest.

8. ETHICAL APPROVALS

This study does not involve experiments on animals or human subjects.

9. DATA AVAILABILITY

All the data is available with the authors and shall be provided upon request.

10. PUBLISHER’S NOTE

This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES