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ABSTRACT

Gene expression analysis of transcriptomic data enables us to identify changes in gene expression under some 
biological conditions. Ribonucleic acid (RNA) sequencing (RNA-seq) data can show genetic mutations and intricate 
biological process connections, which are useful in the diagnosis and treatment of cancer. The existing classical 
differential gene expression analysis techniques are prone to false negatives and false positives with smaller datasets. 
With the improvements in the field of machine learning (ML), we want to build an ensemble learning model for the 
classification of differentially expressed genes (DEGs) from RNA-seq data for pancreatic cancer. The gene expression 
data was obtained from the Cancer Genome Atlas-Pancreatic Adenocarcinoma Project database. In this paper, we 
are proposing a stacking classifier with cross-validation called the stacking CV classifier, which is an ensemble of 
K-nearest neighbor, random forest, gradient boosting, and logistic regression classifiers for effective classification 
of DEGs. We also made a comparative analysis between the results of our ensemble model and existing models in 
the literature. The results of our model were competitive (accuracy 96% and area under the curve 0.99) against the 
stand-alone and existing gene classification models. Our ML-based model is a promising tool for classifying DEGs 
based on gene expression patterns.

1. INTRODUCTION
Pancreatic cancer (PC) is the deadliest disease, ranked 12th  with a 
<5% survival rate among the other cancers. Despite advancements 
in disease treatments and therapies, the prognosis of PC remains 
unsatisfactory [1]. To find abnormal expressions in the genes, an 
efficient differentially expressed genes (DEG) analysis technique is 
needed. Obesity, smoking, drinking alcohol, and eating meals high in 
saturated fats are the causes of PC [2]. The advancement in genome 
molecular profiling provides a way to investigate the structure of 
tumors at the genome level. Gene expression profiling is the most 
common approach to molecular profiling and is used to measure 
the expression levels of a vast number of genes simultaneously. The 
differential gene expression (DGE) analysis is crucial for identifying 
the target biomarkers for any disease. This DGE analysis can be 
done using two popular transcriptomic techniques: microarrays and 
ribonucleic acid sequencing (RNA-seq).

The microarray technology can identify the DEGs but suffers from a few 
limitations, such as being unable to identify novel and low-expressed 
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transcripts and having a limited dynamic range [3]. RNA-seq is a 
next-generation sequencing technique, also called a high-throughput 
sequencing method, that is adopted in clinical research to synthesize 
complementary deoxyribonucleic acid (cDNA) transcripts [4]. RNA-
seq is often used to identify the expression changes in the gene 
transcripts under two or more groups (conditions). It has the ability to 
detect isoforms and novel transcripts. It also has a bigger dynamic range 
[5,6]. The DEG analysis is essential in cancer research to assess the 
biological variation in genes and identify gene biomarkers for disease 
diagnosis and prognosis. There are several bioconductor tools available 
for DGE analysis of RNA-seq counts data, including Limma [7], EdgeR 
[8], EBseq [9], and DEseq2 [10]. The pipeline for RNA sequencing data 
analysis includes the following steps: First, the raw reads are aligned 
to the reference genome using aligners such as STAR [11] and Bowtie 
2 [12]. Next, aligned reads are annotated and summarized. Finally, the 
gene counts are normalized to reduce the variation of counts among 
samples. The normalized count data is then further analyzed using any 
statistical or machine learning (ML) methods for identifying DEGs.

ML is an interdisciplinary field that provides various supervised and 
unsupervised learning techniques for prediction, feature selection, 
and classification problems. It plays a key role in multidisciplinary 
fields like healthcare, business, agriculture, biosciences, etc. [13]. 
In recent days, ML techniques have been widely used in medical 
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applications [14], bioinformatics studies, including image analysis, 
cancer research [15,16], and gene biomarker identification [17]. 
ML and deep learning models can be trained on any size of data, 
even complex data. These models are also applied to a huge 
variety of problems in genetics and genomics, such as identifying 
transcription factor bindings, predicting gene function, and disease 
phenotypes. [18]. Ensemble learning is an approach to ML in which 
the insights from multiple models are combined together for better 
prediction performance. There are three main classes in ensemble 
learning techniques: bagging, boosting, and stacking.

The objective of the paper is to propose an effective novel ensemble-
learning stacking-based classifier model to classify gene expressions 
from RNA-seq data for PC. The remaining sections of the paper are 
organized as follows: Section 2 discusses materials, methods used, and 
methodology; Section 3 shows the results; Section 4 is a discussion about 
results and critical review analysis; and Section 5 concludes the paper.

2. MATERIALS AND METHODS

This section discusses the dataset, methods used, and methodology 
followed in our work.

2.1. About the Dataset
The RNA-seq (messenger RNA) data obtained from the Cancer 
Genome Atlas-Pancreatic Adenocarcinoma (PAAD) project database 
from the National Cancer Institute Genomic Data Commons portal 
consists of read counts of 20,532 genes for 178 PAAD samples [19]. 
As a pre-processing step, we are eliminating the genes whose read 
counts in the sum of all samples are <10. After this step, the resultant 
dataset has 19,258 genes and 178 feature samples.

2.2. Methodology
The preprocessed RNA-seq data of size 19,258 × 178 is evaluated 
for DEGs using edgeR and DESeq2 bioconductor packages in the R 
language. We set the experimental conditions based on their survival 
status (alive or deceased) for both tools in DGE analysis. We have 
collected the DEGs obtained from both tools and constructed a new 
dataset (D) of 1825 DEGs and 178 features for classification with three 
target class labels: up (up-regulated), down (downregulated), and NS 
(not significant). We applied principal component analysis (PCA) as a 
feature selection technique to identify the principal components (PCs) 
with high variance [20]. From the PCA results, we have selected the 
first 15 PCs that show greater than 90% variance in the data. Since 
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Figure 1: The detailed flowchart shows methodology of our work.
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the resultant dataset (Dp) is very imbalanced between up and down 
class labels, we have applied SMOTE to balance each class count [21]. 
Later, the updated oversampled dataset (Dps) of 2565 genes and 15 
feature samples was split into 65% for training and 35% for testing. 
The stacking CV (SCV) classifier is stacked with K-nearest neighbor 
(KNN), random forest (RF), gradient boosting (GB), and logistic 
regression (LR) classifiers. The stack of the first three models acts as a 
level-1 classifier, and the LR model acts as a level-2 or meta-classifier. 
We used 10-fold cross-validation, and the hyper-parameters of the 
models were tuned using the grid search method during the training 
phase. Finally, the fine-tuned SCV classifier model was tested on the 
test dataset to evaluate the model’s performance. Figure 1 shows the 
detailed process of our methodology.

2.3. DEG Analysis
We used two bioconductor package tools called edgeR (Empirical 
Analysis of Digital Gene Expression in R) and DEseq2 for DEG 
analysis. The dataset was analyzed using both tools, and the results 
were intersected to find common DEGs identified by both tools. These 
tools are open source and available under a general public license from 
the bioconductor site (http://bioconductor.org).

2.3.1. edgeR
This algorithm computes the dispersion of genes among samples using 
weighted likelihood and F-test techniques. It can perform a pair-wise 
comparison between two or more groups or conditions. The edgeR 
requires two inputs: one is the read count data, and another is the 
factor that specifies the experimental conditions, cell types, or disease 
states for each sample. It models the data using a negative binomial 
distribution, using Equation 1.

Dgi ~ NB (Ripgj, øg)	�  (1)

Here, Ri is the data size, D is the count of gene g in the ith sample, and 
pgj is the relative abundance of gene g in the jth experimental group to 

which sample i belongs. øg is the dispersion that shows the biological 
variation between the samples.

2.3.2. DESeq2
This algorithm also uses the negative binomial distribution, similar to 
edgeR, and the Wald and likelihood ratio tests for statistical evaluation. 
The DGE analysis pipeline of this algorithm includes the following 
steps: estimate size factor, estimate dispersions, fit linear model, and 
hypothesis testing. DESeq2 performs the DEG analysis based on the 
read count variation among the samples under the given experimental 
conditions.

2.4. Ensemble Learning
Ensemble methods use multiple algorithms to build an effective model 
with better performance than a standalone model. In general, the poor 
models were assembled to gather the insights of all models. Although 
these models may require more computation and time, depending 
on the size of the model, they claim to be more efficient in terms of 
improving the accuracy of the model. In our work, we used the SCV 
classifier, which is an extension of the stacking ensemble class and 
combines multiple classification methods via a meta-classifier [22]. 
To avoid the overfitting problem with a standard stacking classifier, an 
SCV classifier is added with cross-validation functionality. The dataset 
is split into k-folds, and in k subsequent rounds, k-1 folds are used to 
fit the level-1 classifiers. The predictions of the level-1 classifier in 
each round were stacked and passed as input to the level-2 classifier 
(meta-classifier). The detailed steps in the SCV classifier are shown 
in Figure 2.

2.5. Model Evaluation Metrics
The performance of classification algorithms will be evaluated 
using metrics such as accuracy, precision, recall, F1-score, and 
receiver operating characteristics area under the curve (ROC-AUC). 
A  confusion matrix (CM) is a class-wise distribution of the results 
of the classification model. The typical classes in CM include true 
positive (TP), false positive (FP), true negative (TN), and false 
negative (FN). The accuracy of a model is the ratio between correctly 
classified samples and total samples in the dataset [23]. The accuracy 
of a model (M) is calculated using Equation 2, given below.

M TP TN
TP TN FP FNaccuracy =

+
+ + +
( )

( )
� (2)

Table 1: List of top 10 DEGs and their statistical values obtained from 
edgeR tool.

S. No. Gene 
name

log2 fold 
change

logCPM P‑value FDR

1. LY6H –3.464 2.975 5.78E‑26 9.11E‑22

2. LRRC4B –2.762 2.552 1.46E‑24 1.15E‑20

3. DRAIC –3.759 1.874 4.50E‑23 2.36E‑19

4. C1QL1 –3.521 4.084 1.12E‑22 4.42E‑19

5. SYT5 –3.704 4.061 8.23E‑22 2.59E‑18

6. SEZ6 –3.928 2.855 1.13E‑21 2.97E‑18

7. ATP1A3 –3.073 3.452 1.88E‑21 4.23E‑18

8. HAP1 –3.262 2.785 6.13E‑21 1.21E‑17

9. AGT –2.927 7.504 2.98E‑20 5.21E‑17

10. TMEM145 –3.028 1.355 4.20E‑20 6.61E‑17
DEG: Differentially expressed genes, FDR: False discovery rate
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Figure 2: The working procedure of the stacking CV classifier.
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Here, TP is the number of samples predicted correctly as positives, 
TN is the number of samples predicted correctly as negatives, 
FP is the number of samples predicted as positive but actually 
negative, and FN is the number of samples predicted as negative 
but actually positive. The precision of a model is the ratio between 
TP and the total number of samples classified as positive, as shown 
in Equation 3.

M TP
TP FPprecision = +( )

� (3)

The recall of a model is the ratio between TP and the total number of 
samples that are actually positive. It is also called sensitivity or true 

positive rate (TPR), and it is calculated by using Equation 4 shown 
below.

M TP
TP FNrecall = +( )

� (4)

The F1-score of a model provides the combined idea of precision and 
recall. It is the weighted average of precision and recall. The F1-score 
is calculated using Equation 5, shown below.

M

M M

F score

precision recall

1

2

1 1
− =

+










� (5)

Table 2: List of Top 10 DEGs with their statistical values obtained from DESeq2 tool.

S. No. Gene name Base mean log2 fold change lfcSE stat P‑value P‑adj

1. RUNDC3A 381.290 –2.789 0.309 –9.014 1.99E‑19 3.68E‑15

2. APLP1 1804.481 –2.493 0.282 –8.832 1.03E‑18 9.54E‑15

3. LU1 263.620 –1.655 0.194 –8.509 1.76E‑17 7.42E‑14

4. CYP46A1 31.875 –2.008 0.236 –8.502 1.87E‑17 7.42E‑14

5. MSI1 118.704 –1.929 0.227 –8.493 2.01E‑17 7.42E‑14

6. PART 1 44.128 –2.961 0.350 –8.459 2.70E‑17 8.32E‑14

7. TMEM145 36.183 –2.446 0.293 –8.337 7.61E‑17 1.95E‑13

8. SPTBN4 169.988 –2.195 0.264 –8.325 8.43E‑17 1.95E‑13

9. REEP2 254.922 –1.944 0.236 –8.237 1.77E‑16 3.64E‑13

10. SLC12A5 21.305 –2.284 0.279 –8.176 2.94E‑16 5.44E‑13

Figure 3: (a) volcano plot by DESeq2 (b) volcano Plot by edger (c) venn diagram shows common differentially expressed genes between DESeq2 and edgeR 
results (d) principal component analysis plot explains the relationship between the principal components and their explained variance ratio.
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Table 3: Performance comparison of various stand‑alone ML models with SCV classifier.

S. No. Model 
Name

Hyper parameter Information Train‑Test split (%) Accuracy (%) Precision Recall F1‑score

1. KNN metric='euclidean', n_neighbors=2, 
weights='uniform'

65–35 92 93 92 92

70–30 92 93 93 93

75–25 92 93 93 92

2. RF random_state=RANDOM_SEED, max_
features='log2', n_estimators=1000

65–35 90 90 90 90

70–30 90 90 90 90

75–25 90 90 90 90

3 GB learning_rate=0.1, max_depth=9, n_estimators=100, 
subsample=0.5

65–35 91 92 91 91

70–30 91 91 91 91

75–25 90 91 91 90

4. LR solver='lbfgs', max_iter=400 65–35 51 78 50 45

70–30 49 75 48 42

75–25 48 76 48 42

5. SVC C=30, gamma=1, kernel='rbf', probability=True 65–35 65 80 64 63

70–30 65 79 65 64

75–25 64 79 64 63

6. XGB learning_rate=0.2, max_depth=9, n_estimators=50, 
subsample=0.5

65–35 90 90 90 90

70–30 90 91 90 90

75–25 90 90 90 90

7. MLP activation='relu', alpha=0.1, hidden_layer_
sizes=(10,10,10), learning_rate='constant', max_
iter=2000, random_state=1000

65–35 81 83 81 81

70–30 78 84 78 78

75–25 84 85 85 84

8. SCV shuffle=False, use_probas=True, cv=10, meta_
classifier=LR

65–35 96 96 96 96

70–30 94 94 93 93

75–25 93 92 93 92
ML: Machine learning, KNN: K‑nearest neighbour, RF: Random forest, MLP: Multi‑layer perceptron, SVC: Support vector classifier, XGB: Extreme gradient boosting, GB: Gradient 
boosting, LR: Logistic regression, SCV: Stacking CV

The false positive rate (FPR) of the model is the ratio between FP and 
the total number of samples that are actually negative. It is calculated 
using Equation 6, shown below.

M FP
FP TNFPR =

+( )
� (6)

ROC-AUC is a measure that captures the model’s distinguishability 
among the classes. A  higher value of the AUC determines better 
predictions from the model [24]. ROC is plotted between TPR on the 
Y-axis and FPR on the X-axis. As our problem falls under a multi-class 
classification, to obtain FPR and TPR, the predicted output should be 
binarized. This can be done in two ways: the One versus Rest (OvR) 
method or the One versus One method. In the first method, each class 
is compared against all other classes. The second way compares every 
unique pair-wise combination of classes. In our work, we employed 
the OvR method for binarization.

We used Matthew’s correlation coefficient (MCC) for our model 
evaluation. MCC will measure the quality of the classifications. It can 
be used for both binary and multiclass classifications [25]. It is the 
best measure to summarize the confusion matrix. The MCC value of a 
model is calculated using Equation 7, shown below.

M TN TP FN FP
FP TP FN TP TN FN TN FPMCC =

× − ×
+ + + +

( ) ( )

( )( )( )( )
� (7)

3. RESULTS

3.1. Identification of DEGs
From the statistical computation results of edgeR and DESeq2, based on 
the log2 fold change (log2FC) and the probability (P) values, the DEGs 
were identified between the alive and deceased conditions. We set the 
threshold as log2FC ≥ 1 and P < 0.05 (assuming 5% false discovery 
rate) for up-regulated genes, log2FC < −1 and P < 0.05 for down-
regulated genes, and the rest of the genes were treated as not significant 
(NS). DESeq2 and edgeR identify a total of 584  (51 up-regulated 
and 533 down-regulated) and 787  (95 up-regulated and 692 down-
regulated), respectively, as DEGs, out of which 401 (31 up-regulated 
and 370 down-regulated) DEGs are common in both. Tables 1 and 2 
show the top ten DEGs along with their statistical values identified by 

Figure 3a and b show the volcano plots given by DESeq2 and edgeR, 
respectively. The green, red, and black dots in the plot represent up-
regulated, down-regulated, and not-significant genes, respectively. 
Figure 3c shows the venn diagram that represents the common DEGs 
between DESeq2 and edgeR results. We merged (union) the up- and 
down-regulated genes from both results and also added the 855 not 
significantly expressed genes from both results selected randomly for 
classification purposes. Finally, the new RNA-seq dataset obtained 
consists of 1,825 genes (115 up, 855 down, and 855 NS) with read 

edgeR and DESeq2, respectively.

and

and
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Figure 5: Receiver operating characteristics-area under the curve of four classifiers (a) stacking CV (b) K-nearest neighbour  
(c) random forest (d) gradient boosting.
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Figure 4: CM of four classifiers (a) stacking CV (b) K-nearest neighbour (c) random forest (d) gradient boosting.
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the detailed comparison of the performance of various stand-alone 
ML and other ensemble models with our ensemble SCV classifier. 
We considered various supervised ML models such as RF, LR, 
KNN, support vector classifiers (SVC), ensemble models such 
as GB and extreme gradient boosting (XGB), and a multi-layer 
perceptron (MLP) model for comparison. The results were shown 
for three different train-test split categories, and it was observed 
that our SCV model outperformed in all three categories. The KNN, 
RF, and GB models are showing the next best performance in terms 
of accuracy; hence, these models were used as level-1 classifiers 
in our SCV model. We observed our model performing better with 
a 65–35 train-test split. The CM (3 × 3) of SCV, KNN, RF, and 
GB classifiers are shown in Figure  4a-d, respectively. The ROC-
AUC curves for SCV, KNN, RF, and GB classifiers are shown in 
Figure  5a-d, respectively. Each ROC-AUC includes three curves, 
evaluating each class against other classes using the OvR method. 
From the figure, our SVC model has the highest area covered under 
the curve for up versus rest (100%), NS versus rest (98%), and down 
versus rest (99%).

Table  4 shows the comparison of the AUC and MCC scores of all 
the classifiers used in our study. Figure  6 shows the performance 
comparison in terms of accuracy, ROC, and MCC of our proposed 
model to the other ML models. From the figure, we can observe 
that our proposed model has shown a considerable improvement in 
accuracy, AUC, and MCC scores. It is quite surprising that although 
the models KNN, XGB, and GB have approximately the same AUC 
(0.98) as our ensemble model, there is a remarkable difference in their 
MCC scores.

4. DISCUSSION

In our work, we have integrated the capabilities of two widely used 
bioconductor algorithms for DGE analysis, namely edgeR and 
DESeq2, by combining their respective outputs to create a dataset 
that is even more useful for classification. Using this result dataset, 
we built an effective SCV ensemble ML model to classify the DEGs 
from RNA-seq data on PC. We stacked the three best-performing 
classifiers at level 1 in the SCV model. We compared the results of 
our model with those of seven other stand-alone, ensemble ML, and 
MLP models, and our model performed better in terms of accuracy, 
recall, precision, F1-score, AUC, and MCC [26]. Our model shows 
competitively better performance than existing stand-alone models. 
There is considerable improvement in accuracy and AUC scores 

Table 4: AUC and MCC score comparison of classifiers.

Model AUC Average 
AUC

MCC

Up  
versus Rest

Down 
versus Rest

NS  
versus Rest

SCV 1.00 0.99 0.98 0.99 0.92

KNN 0.98 0.95 0.95 0.96 0.88

RF 0.99 0.98 0.97 0.98 0.85

GB 0.99 0.98 0.97 0.98 0.85

MLP 0.97 0.97 0.95 0.96 0.73

SVC 0.94 0.97 0.92 0.94 0.53

XGB 0.99 0.98 0.97 0.98 0.84

LR 0.93 0.94 0.88 0.91 0.35
AUC: Area under the curve, MCC: Matthew’s correlation coefficient, KNN: 
K‑nearest neighbour, MLP: Multi‑layer perceptron, XGB: Extreme gradient boosting,  
SVC: Support vector classifier, GB: Gradient boosting, LR: Logistic regression,  
RF: Random forest, SCV: Stacking CV

Table 5: Comparative analysis of the recent ML model’s performance in gene classification.

Ref Disease Dataset and 
type

Gene selection method Model (s) and accuracy (%)

Rohimat et al., 2022 [27] Lung cancer Microarray Genetic algorithm Linear SVM (91%)

Abdelwahab et al., 2022 [28] Lung cancer RNA‑seq RFE SVM (94%), RF (93%)

Coleto‑Alcudia and 
Vega‑Rodríguez, 2022 [29]

Cancer RNA‑seq Filtering and ABCDalgorithm SVM (93%)

Wu et al., 2021 [30] Breast cancer RNA‑seq Limma package KNN (87%), NB (85%), DT 
(87%), and SVM (90%) 

Chen and Dhahbi, 2021 [31] Lung cancer RNA‑seq Principal component analysis, Lasso, 
minimal‑Redundancy‑Maximal 
relevance (mRMR), and XGboost

RF (90%)

This study Pancreatic cancer RNA‑Seq edgeR and DESeq2 Ensemble stacking model with 
KNN, RF, GB, and LR (96%)

SVM: Support vector machine, NB: Naive bayes, RNA: Ribonucleic acid, KNN: K‑nearest neighbor, RF: Random forest, ML: Machine learning, GB: Gradient boosting, LR: Logistic 
regression, Lasso: Least absolute shrinkage and selection operator, XGboost: Extreme gradient boosting, ABCD: Artificial bee colony based on dominance

counts for 178 PAAD samples as features and the target variable with 
3 classes (up, down, and NS).

3.2. Classification Results
Figure 3d shows the PCA plot between the number of PCs and their 
explained variance ratio. From the plot, we observe that the first 15 
PCs have more than 90% of the explained variance. Table 3 shows 

Figure 6: Performance comparison other machine learning models  
with our proposed model.
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among different train-test split ratios. From Tables 1 and 2, we can 
observe that only one gene (TMEM145) is common in the top 10 
DEGs obtained by both algorithms, as they follow different statistical 
approaches for identifying DEGs. There are only 401 genes that are 
common in the 1371 DEGs produced by both techniques. Hence, 
we employed both algorithms for selecting DEGs. Researchers have 
proposed many ML-based approaches along with the various feature 
selection methods on both microarray and RNA-seq data of various 
cancers in the literature. Popular supervised models, like linear 
support vector machines, KNN, Naive Bayes, Decision Tree (DT), 
and genetic algorithms for feature selection, were used on lung cancer 
microarray data classification [27-30].

Chen and Dhahbi [31] have used mixed feature selection methods 
such as PCA, least absolute shrinkage and selection operator, 
mRMR, and XGBoost for gene selection from RNA-seq data on 
lung cancer and applied RF for classification. Zhang and Liu [32] 
have applied biomarker discovery for hepatocellular carcinoma 
from high-throughput data using multiple feature selection 
methods. Yuan et al. [33] have worked on lung cancer gene 
expression data and used the Monte-Carlo feature selection method. 
Musheer et al. [34] have worked on different cancer types, such as 
colon cancer, acute leukemia, prostate tumors, high-grade gliomas, 
lung cancer II, and leukemia 2 microarray data. They used different 
gene selection methods, such as independent component analysis and 
an artificial bee colony-based wrapper approach with Naive Bayes, 
and the accuracies ranged from 92% to 98%. Pati [35] has classified 
genes in lung cancer using the Info Gain Ranking Method as a gene 
feature selection method. The models MLP, sequential minimal 
optimization, and random subspace were used for classification, and 
the accuracy ranges from 87% to 92%.

Many of the studies in the literature have used feature selection 
methods such as genetic algorithms, Recursive feature elimination 
(RFE), PCA, etc. [36] to identify the target genes from the thousands 
of gene samples. Certain methods may require a significant amount of 
time and have been shown to have lower accuracy rates. In our study, 
we employed the statistical approach for selecting genes under given 
experimental conditions, and it was very time-effective. The potential 
of both the DESeq2 and edgeR algorithms enabled the training of our 
model, which resulted in an effective classifier model. Table 5 shows 
the critical comparative analysis of the ML models that were proposed 
in the past in recent literature with our proposed model, related to gene 
expression classification and their performance.

5. CONCLUSION

We proposed a novel ensemble ML model for RNA-seq gene expression 
classification for PC. We used the edgeR and DESeq2 bioconductor 
packages for the identification of DEGs and to create a new dataset 
for classification. Our model learns the genetic signatures from the 
new dataset. The proposed model has proven to be effective, and it can 
be used to classify the RNA-seq data for DEG identification in PC. 
In our subsequent work, we focused on finding the target biomarker 
genes in PC using our proposed model. We believe that there is a lot of 
scope for researchers to work on building bio-ML models to analyze 
different types of omics data.
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