
© 2024 Rupesh Kumar, et al. This is an open access article distributed under the terms of the Creative Commons Attribution License -NonCommercial-ShareAlike 
Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/). 

Combinatorial network of  transcriptional and post-transcriptional 
regulation in amyotrophic lateral sclerosis

Rupesh Kumar1* , Pammi Gauba1, Shazia Haider2

1Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
2Department of Biosciences, Faculty of Natural Sciences, Jamia Millia University, New Delhi, India.

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder observed due to the loss of motor neurons 
which control voluntary actions of the body. Four genes (superoxide dismutase 1 [SOD1], chromosome 9 open 
reading frame 72 [C9ORF72], TAR DNA-binding protein 43 [TARDBP], and fused in sarcoma [FUS]) were 
considered high-risk genes, associated about 70% of familial ALS (fALS) cases. Molecules such as transcription 
factor (TFs) and post-transcriptional regulators microRNAs (miRNA) help to elucidate the expression level of genes 
and their regulation mechanisms. In this study, a constructed combinatorial regulatory network of ALS high-risk 
genes regulated by common miRNAs targets and TFs. Three coherent and four incoherent feed-forward loops (FFLs) 
using 3-node motif relationship (Gene-miRNAs-TFs) were identified. Two miRNAs (miR-3163 and miR-4422) 
were transcriptionally regulated by four (CEBPD, EGR1, SP1, and TBP) TFs, in which (CEBPD, EGR1, and SP1) 
upregulate the SOD1, whereas TBP downregulate the FUS. The miRNAs expression data showed miR-422 is highly 
expressed in brain and high-risk genes were more expressed in frontal cortex and cerebellum regions. Enrichment 
analysis showed miRNAs majorly associated with neuron. The results of this study highlighted the importance of 
regulatory molecules such as TFs and miRNA that control the functionally of genes simultaneously. Single TF or 
miRNA able to control the more than one gene, showed in terms of FFLs important for regulation inside the cell. In 
future, in vitro and in vivo biochemical studies of the observed potential regulators could reveal further information 
about their role in the pathogenesis of ALS and could be used as therapeutic targets.

ARTICLE HIGHLIGHTS

●	 Candidate nine common miRNAs targeted four ALS-hr-Gs.
●	 SOD1 and FUS gene expression may inhibit by common miRNAs 

(miR-3163 and miR-4422) at post-transcriptional.
●	 SOD1 gene upregulated by three TFs (CEBPD, EGR1, and SP1) 

and FUS downregulated by TBP.
●	 Regulatory 3-node motif analysis showed two TFs (TBP and 

EGR1) upregulated miR-4422 and four TFs (CEBPD, EGR1, 
SP1, and TBP) upregulated miR-3163.

●	 Candidate nine miRNAs enriched with neuron functions, miR-
422 is highly expressed in brain as compared to miR-3163.

●	 C9ORF72, TARDBP, FUS majorly expressed in cerebellar 
hemisphere region of brain but SOD1, highly expressed in frontal 
cortex-region.

●	 Spatiotemporal expression analysis showed ALS-hr-Gs expressed 
in different areas of brain during life span.
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1. INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rare and fatal neurological 
disorder affects motor neuron [1]. Globally, the rate of prevalence 
observed in adulthood is 5.4/100,000 [2]. In patients, two types were 
found familial ALS (fALS) and sporadic ALS (sALS) [3]. Over the 
past year, significant research helps to identifying number of genes 
related to fALS and sALS [4]. Approximately 70% of fALS cases are 
caused by the most commonly altered genes; superoxide dismutase 
1 (SOD1), chromosome 9 open reading frame 72 (C9ORF72), 
TAR DNA-binding protein 43 (TARDBP), and fused in sarcoma 
(FUS) [5-8]. Despite this, fALS accounts for about 10% of reported 
cases, whereas the genetic basis of sALS is largely unclear [4], 
nevertheless C9ORF72 is well-known, it only contributes around 5% 
of sALS cases [9]. The association percentage of genes (C9ORF72, 
FUS, SOD1, and TARDBP) reported in previous studies shown in 
Table 1 [10]. Due to multigenic nature of the disease, the genetic 
structure of ALS is complex and its associated gene mutations 
frequency varies. It implies that ALS has a significant amount of 
missing heredity to understand it pathogenesis. In the past years, 
clinical and computational investigations have aided in providing 
extensive knowledge of the disease-causing genes and their variations 
in ALS. Various pathophysiological pathways have been reported that 

Journal of Applied Biology & Biotechnology Vol. 12(2), pp. 248-258, Mar-Apr, 2024 
Available online at http://www.jabonline.in
DOI: 10.7324/JABB.2024.156624

ARTICLE INFO

Article history: 
Received on: August 08, 2023 
Accepted on: January 07, 2024 

Key words: 
Amyotrophic lateral sclerosis, 
Superoxide dismutase 1, 
Chromosome 9 open reading frame 72, 
TAR DNA-binding protein 43, 
Fused in sarcoma, 
miRNAs, 
Transcription factors.

Available online: February 20, 2024

https://orcid.org/0000-0002-1260-6216
https://orcid.org/0000-0002-1237-4400
http://crossmark.crossref.org/dialog/?doi=10.7324/JABB.2024.156624&domain=pdf


Kumar, et al.: Combinatorial regulation of ALS-High risk genes 2024;12(2):248-258 249

disrupt and lead to ALS pathogenesis such as RNA metabolism, protein 
homeostasis, DNA repair mechanisms, damage of nucleocytoplasmic 
transport, excitotoxicity, mitochondrial and axonal transport 
disturbance, oxidative stress, dysfunction of oligodendrocyte, and 
vesicular transport aberrations [10-12]. On the basis of ALS-genes 
associated pathophysiology with other neurodegenerative disease 
such as frontotemporal dementia, progressive muscular atrophy, 
primary lateral sclerosis, and hereditary spastic paraplegia, ranking 
of four genes (C9ORF72, FUS, SOD1, and TARDBP) were done 
[Figure 1] [13-15]. Four genes C9ORF72, FUS, SOD1, and TARDB 
have been found to cause ALS pathogenesis and were considered ALS 
high-risk genes (ALS-hr-Gs) [Figure 1]. Other than four ALS has 
been linked to a large number of genes, these genes might not always 
be harmful, and specific mutations in recognized disease-causing 
genes might not always be pathogenic [15]. Consequently, it is rarely 
simple to link a genetic alteration to the ALS clinical phenotype. 
Therefore, understanding the pathogenic impact of ALS associated 
mutations is necessarily required to explain the disease-associated 
pathophysiology.

The expression of gene can be control at the level of transcriptional 
and post-transcriptional inside the cell to direct the normal 
function. The two layered regulatory network approaches, in which 
transcription factors (TFs) function as a mediator for microRNAs 
(miRNAs) regulatory process helps to elucidate the expression 
level of genes [16,17]. TFs can activate or repress the transcription 
process of gene by binding to the specific location in promotor 
regions and regulate gene expression at transcription level. Other 
small non-coding RNA molecule miRNA ~22nt in length repress 
mRNA translation process using mRNA decay or inhibition of 
mRNA translation and results in altered targeted gene expression 
at post-transcriptional level [18]. It has been found that miRNAs 
and mRNA transcription process is regulated by single or multiple 
TFs and also the expression of mRNA, including TFs, could be 
controlled by miRNAs [19]. miRNAs involved in various biological 
functions and diseases, specifically in multifactorial nature diseases, 
gives an opportunity to understand their mechanisms [20]. To date, 
we have a better understanding of miRNA biogenesis process, 
function and their presence in biofluids including urine, blood, 
and cerebrospinal fluid [21,22]. Various studies have been reported 
that miRNAs are differentially expressed (up- or downregulation) 
in ALS patients [23,24]. The tissue-specific expression nature of 
miRNAs helps to understand to distinguish between normal and 
disease progression of respective tissue [25-27]. Several studies 
reported the important role of miRNA molecules in physiological 
and pathological processes, such as immune functions, metabolic 
pathways, tumorigenesis, and many neurodegenerative diseases 
[28-31]. Number of miRNAs such as (miR-451, miR-1275, miR-
328, miR-638, miR-149, miR-665, and miR- 338-3p) were 
predicted as biomarker for ALS in human samples [19]. Many 
studies reported that miRNAs expression in brain are involved in 
microglia activation and inflammation processes [32,33]. They 
also play an important role in synaptic plasticity, neuron death 
or degeneration, and neuron development [34]. In this research 
article, we applied a bioinformatics approach to identified 
potential regulators of four ALS-hr-Gs. A combinatorial 
ALS-hr-Gs network along their transcriptional (TFs) and 
post-transcriptional regulators (miRNAs) were constructed. 
Furthermore, we performed the GO function analysis such as 
biological process (BP), molecular functions (MFs), and cellular 
component (CC) suggested that these miRNAs participated in 
many metabolic activities and biological functions that may Ta
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play an important role in ALS. We also predicted the association 
of candidate miRNAs with biological pathways, relation 
with other diseases and their expression pattern in brain. We 
also investigated the gene expression pattern of ALS-hr-Gs at 
different age groups along with different parts of the brain. We 
were interested in predicting novel molecular regulators at motif 
level to understanding the pathogenesis of ALS.

2. METHODS

2.1. Candidate miRNA and TF Prediction of ALS‑hr‑Gs
To identify the miRNA target of ALS-hr-Gs, we used three miRNA 
target prediction tool TargetScan V8.0 (https://www.targetscan.
org/) [35], mirTarBase (https://mirtarbase.cuhk.edu.cn/) [36], and 
miRDB (http://mirdb.org/) [37] databases. After removing redundancy, 
we considered only those miRNAs which were commonly present in 
all of the three databases. From the commonly predicted miRNAs of 
three databases, we filtered those miRNAs targeting all four ALS-
hr-Gs considered candidate miRNAs. The transcriptional regulatory 
relationships unraveled by sentence-based text-mining (TRRUST) a 
transcription binding database [38], were used to identify the TFs for 

ALS-hr-Gs. The analysis of “TRRUST” database between TFs and 
genes was based on manual curation of Medline abstract and regulatory 
interactions inferred from high-throughput expression data. On the 
basis of regulatory function, TFs were categories as (i) activators and 
(ii) repressors molecules.

2.2. Regulatory Relationship between TFs and miRNAs
To analyze the regulatory relationship between predicted candidate 
miRNAs and TFs, we took the miRNA and TFs relationship from 
TransmiR v2.0 database [39]. TransmiR v2.0 database manually curate 
TFs-miRNA regulatory relationship based on research publications 
and experimentally derived ChIP-seq-analysis. Here, we downloaded 
tsv.gz format data file (all evidence level) from database contains TF-
miRNA relation in human.

2.3. Construction of a Combinatorial ALS‑hr‑Gs Network
To construct the combinatorial ALS-hr-Gs network, we used three 
relationship (i) miRNA-ALS-hr-Gs, (ii) ALS-hr-Gs-TFs, and 
(iii) miRNAs-TFs. The combinatorial ALS-hr-Gs network was 
constructed and visualized using Cytoscape v3.8.2 [40]. On the basis 

Figure 1: Representation of the complexity of amyotrophic lateral sclerosis (ALS) pathogenesis. The inner circle includes the associated genes with highest 
frequency (chromosome 9 open reading frame 72, SOD1, TAR DNA-binding protein 43, and fused in sarcoma). The second-order ring consist the large number of 
genes with a lower frequency of association. The third-order ring consists the possible pathogenic mechanisms that are hypothesized to be associated with inner and 
second circle genes. The outer most ring consists the overlapped diseases that may be associated with ALS genes (inner and second circle). The complex relationship 
between genes associated with neurodegeneration, mechanisms of neurodegeneration, and clinical disease phenotypes is apparent. Orange square = major genes; 
pink rectangle = other ALS genes; green circle = disease pathophysiology; yellow circle = high frequent disease pathophysiology; blue diamond shape = associated 
diseases. Gene-mechanisms connections are shown by red arrow, and gene-disease association by blue arrow.
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of 3-node motif (TF-miRNA-gene) analysis, we identified both FFLs 
(coherent and in-coherent) in ALS-hr-Gs combinatorial network. We 
considered the general mechanisms of mRNA translation inhibition 
showed by miRNAs at post-transcriptional [41,42].

2.4. Functional Annotation of Candidate miRNAs
To understand the biological significance of the candidate miRNAs, 
we used the same prediction tools and approach implemented in 
miRNA target prediction for ALS-hr-Gs. We performed the functional 
annotation of candidate miRNAs in terms of MF, BP and CC using 
the ShinyGO v0.75 tool (http://bioinformatics.sdstate.edu/go/). 
Furthermore, we done the pathway analysis of candidate miRNAs [43] 
using Wikipathways dataset in ShinyGO v0.75 tool. The functional 
analysis plotted using the fold enrichment statistics represented the 
percentage of genes in list belonging to a process, divided by the 
corresponding percentage in the background and false discovery rate 
used with a cutoff (0.05) indicated how likely the enrichment is by 
chance.

2.5. Candidate miRNAs‑diseases Association
To analyze the association of the candidate miRNAs with other diseases, 
we used WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) 
tool [44]. We done the analyses based on over representation analysis 
enrichment method, enrichment categories (disease_OMIM), ID type 
(gene symbols), reference list (genome_protein_coding) along the 
parameters such as FDR (FDR < 0.05) used (Benjamini–Hochberg) 
method.

2.6. Analysis of Candidate miRNAs Expression Pattern
We utilized the DIANA-miTED (miRNA tissue expression 
database) [45] to understand the expression pattern of predicted 
candidate miRNAs targeting all four ALS-hr-Gs. Information about 
miRNA expression and distribution across cell types and tissues is 
crucial to the understanding of their function and for their translational 
use as biomarkers or therapeutic targets. DIANA-miTED is the 
database consist miRNA expression values obtained from the results 
of 15,183 raw human small RNA-Seq (sRNA-Seq) datasets from 
the sequence read archive and the cancer genome atlas. The miRNA 
expression values were used to make box plot in terms of read counts, 
reads per million (RPM), and log2 (RPM) [45]. Here, we selected the 
log2 (RPM) expression value for our data to obtained the relationship 
between the input tissue (brain) and expression of candidate miRNAs.

2.7. Validation of ALS‑hr‑Gs Expression Pattern
We used the GTEx platform [46] to validate the expression pattern 
of ALS-hr-Gs in different regions of the brain. Using violin plot, we 
represented the expression data on the basis of median value. Using 
the BEST online server, for brain expression spatiotemporal pattern 
analysis, we generated the spatiotemporal heat map of ALS-hr-Gs. 

The inputs were utilized by BEST server (gene list) without P-value, 
logarithm transformation (N), SNP mapping rule (within gene), gene 
P-value correction (Bonferroni; 0.05), and reference data (RNAseq 
data from Brainspan) [47].

2.8. Ranking of Candidate miRNAs and TFs
To identify the miRNA and TF which may highly govern the most 
crucial risk in generating the pathophysiology of ALS, we used a list 
of ALS genes targeted by candidate miRNAs and TF and also their 
presence at 3 nodes motif level (coherent and in-coherent feed-forward 
loops). We provided, the rank-1 for those miRNA and TF targeted the 
maximum number of ALS related genes and also regulating ALS-hr-
Gs at 3 nodes motif level.

3. RESULTS

3.1. Combinatorial Regulatory Network
The miRNA-targets commonly identified by all three prediction 
programs for SOD1, C9ORF72, TARDBP, and FUS were 130, 559, 
909, and 1180, respectively [Table 2]. From the TRRUST database, we 
found 9 TFs which regulates (activation/repression) SOD1 and FUS. 
Using the TransmiR v2.0 database, 167 TFs upregulate the expression 
of miR-422 and miR-3163. The regulator-target relationships in the 
combinatorial ALS-hr-Gs network were made up of transcriptional 
and post-transcriptional regulators which involved 2057 nodes and 
3086 edges [Figure 2a and Table 3]. In the combinatorial interaction, 
it was found that of the 4 ALS-hr-Gs, 2 functioned as TFs. From the 
combinatorial ALS-hr-Gs network, we found nine miRNAs (miR-
1468-3p, miR-3163, miR-33a-3p, miR-3691-3p, miR-4422, miR-
4666a-3p, miR-513a-5p, miR-6504-3p, and miR-6835-3p) targets all 
four ALS-hr-Gs [Figure 2a] and nine TFs (CEBPD, EGR1, KLF4, 
MSX2, MTF1, NFE2L2, PPARD, SP1, and TBP) regulates two 
of the ALS-hr-Gs (SOD1 and FUS) [Figure 2a]. SOD1 gene was 
upregulated by six TFs (CEBPD, EGR1, MSX2, MTF1, NFE2L2, and 
PPARD) and downregulated by two TFs (KLF4 and SP1), whereas 
TBP downregulated FUS. At post-transcriptional regulation, three TFs 
(SP1, TBP, and EGR1) activates two miRNAs (miR-3163 and miR-
4422). The miR-3163 and miR-4422 were also commonly targeted by 
few numbers of TFs [Figure 2a]. The coherent and in-coherent FFL 
analysis, revealed SOD1 directly activated by TFs (SP1, EGR1, and 
CEBPD) and also inhibited by SP1 [Figure 2b]. From the network 
analysis, we concluded the potential regulators of ALS were four TFs 
(SP1, EGR1, CEBPD, and TBP) target two miRNAs; miR-3163 and 
miR-4422 and these miRNAs negatively regulate the gene expression 
of SOD1 and FUS at post-transcriptional level [Figure 3].

3.2. Top Rank Candidate miRNAs and TFs
We found, miR-3163 as rank-1, in nine candidate miRNAs (miR-1468-
3p, miR-3163, miR-33a-3p, miR-3691-3p, miR-4422, miR-4666a-3p, 
miR-513a-5p, miR-6504-3p, and miR-6835-3p) targeted other 26 ALS 

Table 2: Number of miRNAs targets predicted by different predictions tools.

Gene name Gene Id Uni prot Id Target scan miRDB miTar base Total miRNA (After removing redundancy)

SOD1 6647 P00441 113 26 200 131

C9ORF72 203228 Q96LT7 537 236 364 559

TARDBP 23435 Q13148 1195 191 1131 909

FUS 2521 P35637 1939 133 559 1180
miRNAs: microRNAs, SOD1: Superoxide dismutase 1, C9ORF72: Chromosome 9 open reading frame 72, TARDBP: TAR DNA-binding protein 43, FUS: Fused in sarcoma
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genes (PFN1, TARDBP, UNC13A, ALS2, ERBB4, C9ORF72, PON2, 
SPG11, SETX, VAPB, TBK1, NEK1, MATR3, TIA1, CHRNA3, 
CHMP2B, KIFAP3, EPHA4, SOD1, ANG, HNRNPA2B1, GLE1, 
FIG4, PON3, VCP, and FUS) [Table 4] and also presented at 3-node 
motif level, regulating the SOD1 and FUS [Figure 2b]. We identified, 
SP1 as a rank-1 TF out of nine TFs, were targeting 4 ALS genes 
(SOD1, SQSTM, CHRNB4, and PON1) [Table 5] and also presented 
at 3-node motif level, regulating the function of SOD1 and rank-1 
miRNA (miR-3163) [Figure 3].

3.3. Functional Annotation of Candidate miRNAs
All nine predicted miRNAs targeting ALS-hr-Gs were functionally 
annotated revealed their functions in BP, MF, and their involvement 
in the regulation of CC. These candidate miRNAs were mostly 
biologically associated in neuron differentiation, neurogenesis, and 
positive regulation of RNA biosynthetic processes [Figure 4a]. The 

Figure 2: The combinatorial amyotrophic lateral sclerosis (ALS) high risk gene network (a). The complete gene regulatory network. Nodes: ALS-hr-Gs in different 
color filled circle, miRNAs represented in orange diamond shape and nine candidate miRNAs showed in light green diamond shape common targets of four ALS-
hr-Gs, uncommon transcription factor (TFs) shown in cyan filled circle, common TF targeting miRNA represented in yellow filled circle, common TF targeted both 
miRNA and ALS-hr-Gs showed in red filled circle. Edges: blue arrow represented (activation; TFs to high-risk genes), Red T-shape edges represented (repression; 
TFs to high-risk genes), pink arrow represented (activation; TFs to miRNAs), grey line represented (miRNA- ALS-hr-Gs relationship) and (b) Three node motif 
regulation between TF: miRNA:gene.

b

a

Table 3: Statistics of nodes and edges in the combinatorial amyotrophic 
lateral sclerosis-high-risk gene network.

Nodes/relationship No. of unique objects

Entities of the network

TFs 174

miRNAs 1881

Genes (non-TFs) 2

Total no. of nodes 2057

Regulatory relationship

TFs–genes 9

miRNAs–genes 2844

miRNAs–TFs 233

Total no. of edges 3086
miRNAs: microRNAs, TFs: Transcription factors
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in the brain. The violin plot of SOD1 gene expression [Figure 6a], 
in terms of transcript per million (TPM) is highest, especially in 
the frontal cortex (BA9) region, and the TPM value of other genes 
showed (C9ORF72, TARDBP, and FUS) highly expressed in 
cerebellar hemisphere part of the brain [Figure 6b-d]. Both SOD1 
and C9ORF72, showed less expression in basal ganglia region 
(putamen) but TARDBP, FUS showed less expression in anterior 
cingulate cortex (BA24) and amygdala region. Spatiotemporal 
expression analysis showed different areas of the brain like 
frontal cortex, parietal cortex, temporal cortex, occipital cortex, 
hippocampus, and cerebellum in mainly involved in expression 
of ALS-hr-Gs from middle adulthood (40 Y < = age <60 Y) to 
early fetal 8 (PCW < = age < 13 PCW) age. Furthermore, we also 
observed a continuous expression of genes [Figure 6e] in most of the 
areas of the brain at different ages of the life cycle. Some regions of 
the brain (insula, parahippocampal gyrus, substantia nigra, nucleus 
accumbens, olfactory bulb, and hypothalamus) have not seen any 
gene expression at any age of the life span. Both the results showed 
high and continuous expression of ALS-hr-Gs in frontal cortex and 
cerebellum parts of the brain [Figure 6e].

Table 4: Ranking of candidate miRNAs.

RANK miRNA Number of ALS gene targeted

1 miR-3163* 26

2 miR-1468-3p 22

3 miR-33a-3p 20

miR-6504-3p 20

4 miR-513a-5p 19 

miR-4666a-3p 19

5 miR-4422 17

6 miR-3691-3p 14

7 miR-6835-3p 5
This table shows the ranking of candidate nine micro-RNAs (miRNAs). The ranking was 
done on the basis of number of targeted amyotrophic lateral sclerosis (ALS)-associated 
genes. The “*” represented the miRNA (miR-3163) showed the highest number of 
targeted genes were considered as rank-1. The miRNAs showed the same number of 
ALS genes targets, provided the same ranking

Figure 3: The potential regulators of amyotrophic lateral sclerosis (ALS) high 
risk genes. The potential regulators of ALS-hr-Gs SOD1 and FUS showed in 
(yellow filled circle) are four transcription factor (TFs) (SP1, EGR1, CEBPD 
and TBP) represented in red filled circle target two miRNAs (miR-3163 and 
miR-4422) showed in light green filled diamond shape. The mode of regulation 
from TFs to miRNA showed in pink arrow, TF to gene activation in blue arrow 
and TFs to gene repression in red T-shape, miRNA to gene repression in black 
curved T-shape.

Table 5: Ranking of candidate transcription factors.

TF Number of ALS 
gene‑target

Name of ALS gene‑target Ranking

SP1* 4 SOD1, SQSTM, CHRNB4, PON1 1

PPARD 2 SOD1, ANG 2

CEBPD 1 SOD1 3

EGR1 1 SOD1

KLF4 1 SOD1

MSX2 1 SOD1

MTF1 1 SOD1

NFE2L2 1 SOD1
SOD1: Superoxide dismutase 1, This table shows the ranking of candidate nine 
transcription factors (TFs). The ranking was done on the basis of number of targeted 
amyotrophic lateral sclerosis (ALS)-associated genes. The “#” represented the TF 
(SP1) showed the highest number of targeted genes were considered as rank-1. The 
TFs showed the same number of ALS genes targets, were provided the same ranking

MF enrichment analysis represented their major involvement in DNA 
binding and transcription cis-regulatory DNA binding [Figure 4b]. 
The CC results stated that the miRNAs association with different 
cell component such as glutamatergic synapse, chromosome, neuron 
projection, and synapse [Figure 4c].

3.4. Pathway, Disease Association, and miRNAs Expression 
Profiling
The pathways enrichment annotation results showed the nine-candidate 
miRNA were highly associated with metabolic pathways, pathways 
in cancer [48-50] and Herpes simplex virus 1 infection [51,52] 
[Figure 5a]. The disease-association enrichment analysis showed 
high association with leukemia, breast cancer, diabetes mellitus and 
tracheoesophageal fistula [Figure 5b]. The miRNA expression pattern 
revealed two miR-33a-3p and miR-4422 were highly expressed in 
brain [Figure 5c].

3.5. Expression Pattern of ALS‑hr‑Gs
The collected information about the expression pattern of ALS-hr-Gs 
were analyzed using the violin plot showing the expression pattern 

Table 6: Highlighting the amyotrophic lateral sclerosis-hr-Gs regulated by 
transcription factors and miRNAs.

Name of 
ALS‑hr‑Gs

Type of regulation
TFALS hr‑Gs

Common miRNAs 
involved in inhibition

SOD1 EGR1*
SP1*#

CEBPD*

miR-3163, miR-4422

FUS TBP# miR-3163, miR-4422
miRNAs: microRNAs, ALS: Amyotrophic lateral sclerosis, SOD1: Superoxide 
dismutase 1, FUS: Fused in sarcoma, ALS-hr-Gs: Amyotrophic lateral sclerosis 
high-risk genes, *: Up-regulate, #: Down-regulate, *#: Up and down-regulate
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Figure 4: Functional annotation of candidate miRNAs (a). Representation of biological process (BP) of nine candidate miRNAs in the form of dot plot. 
The FDR value were calculated on the basis of nominal P-value (0.05) from hygrometric test and fold enrichment represented the percentage of input genes 
related to a GO term. The size of the circle belongs to the number of genes belongs a particular GO term and (b) Representation of molecular function (MF) 
of nine candidate miRNAs in the form of dot plot. The FDR value were calculated on the basis of nominal P-value (0.05) from hygrometric test and fold 
enrichment represented the percentage of input genes related to a GO term. The size of the circle belongs to the number of genes belongs a particular GO term 
and (c) Representation of CC of nine candidate miRNAs in the form of dot plot. The FDR value were calculated on the basis of nominal P-value (0.05) from 
hygrometric test and fold enrichment represented the percentage of input genes related to a GO term. The size of the circle belongs to the number of genes 
belongs a particular GO term.
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b
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Figure 5: (a) Representation of the pathway analysis of candidate miRNAs in the form of dot plot. The FDR value were calculated on the basis of nominal P-value 
(0.05) from hygrometric test and fold enrichment represented the percentage of input genes related to a GO term. The size of the circle belongs to the number of 
genes belongs a particular GO term. (b) Representation of the possible predicted disease association analysis of nine candidate miRNAs and (c) Expression profiling 
of candidate miRNAs in brain, different colour box plot represented the expression of a particular miRNA on the basis of log2 (RPM).
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using gene expression data, a gene-regulated analysis identified potential 
candidate genes for squamous lung cancer [53]. Several bioinformatic 
integrative analyses identified key target genes, miRNA, and TF as prostate 
cancer signatures [54], neurodegenerative diseases [17,55]. In our study, 
nine miRNAs (miR-1468-3p, miR-3163, miR-33a-3p, miR-3691-3p, 
miR-4422, miR-4666a-3p, miR-513a-5p, miR-6504-3p, and miR-6835-
3p) were commonly targeted all four ALS-hr-Gs. The coherent and in-
coherent FFLs analysis showed that SOD1 and FUS directly or indirectly 
regulated by TFs (SP1, EGR1, and CEBPD) and TBP respectively. These 
coherent and in-coherent coherent structure can play an important role 
in the dynamic behavior of biological networks [56,57]. The structure of 
several coherent FFLs can be viewed as a type of redundancy engineering 
for biological robustness, similar to how alternate routine pathways aid 
competition and survival in changing environments [58]. MicroRNAs, 
one of the most important endogenous epigenetic biomolecules, limit 
target gene post-transcriptional expression [59]. A single miRNA can 
interact with several genes. miRNA expression is highly tissue- and 

Figure 6: Expression level of amyotrophic lateral sclerosis (ALS) high-risk genes in brain using GTEx platform. (a) Expression levels of SOD1 in different regions 
of the brain. (b) Expression levels of Chromosome 9 open reading frame 72 in different regions of the brain. (c) Expression levels of TAR DNA-binding protein 43 
in different regions of the brain. (d) Expression levels of FUS in different regions of the brain and (e) Spatio-temporal expression heatmap from best tool showed the 
expression of ALS high-risk genes in brain with different age groups.
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ba

e

4. DISCUSSION

With the advancement of experimental technology, various computational 
tools and databases are available that are associated with enormous 
information allowing us to identify potential genes and protein, other 
biomolecules associated with ALS thus providing an insight to the 
pathogenesis. Understanding how ALS-hr-Gs regulated is therefore 
important in developing treatments. One of the significant approaches 
to find the reason for this is to identify the transcriptional and post-
transcriptional regulators which are interconnected to each other and 
regulates functions. This is how a combinatorial regulatory network is 
thought to determine the human transcriptome. Here, our study focused 
on four ALS-hr-Gs which can be targeted by some candidate miRNAs 
and TFs during the process of transcription and post-transcriptional level 
respectively. Understanding the regulatory network and its topological 
features contributes in identifying the functional role of target-associated 
TFs and miRNAs, which may provide novel therapeutic targets, e.g., 
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cell-specific and can be used as disease diagnosis and treatment [60]. 
miRNAs can regulate more than 50% of coding genes and help to stable 
the biological processes. As a result, it is suspected that miRNAs may 
have a role in neurodegenerative disorders [61,62]. In this study, two 
miRNAs (mir-3163 and miR-4422) important for the combinatorial ALS-
hr-Gs network and can be the potential target for therapeutic intervention 
of ALS disease. The one miRNA (mir-3163) targeted other 26 ALS-genes 
and also presence at 3-node motif level and can be used to target multiples 
genes to suppress the overlapped pathogenesis of ALS. The GO functions 
(BP, MF, and CC), pathways and disease association stated the role of 
candidate miRNAs in neuronal activity and pathways in cancers. miR-
33a-3p and miR-422 were highly expressed in brain as compared to the 
other candidates. The expression data of ALS-hr-Gs showed continuous 
expression in most of the areas of brain, throughout the life cycle mostly in 
frontal cortex and cerebellum part of the brain. It was reported that miRNA 
played an important role in several molecular pathways contribute to ALS 
pathogenesis such as neurodegeneration and apoptosis [52]. Utilization 
of miRNAs/TFs and their association with genes could be a biomarker 
for diagnosis and clinical care of ALS patients is still in its early stages 
required intensive research.

5. CONCLUSION

In this study, to unravel the signaling challenges associated with ALS 
and regulatory mechanisms. A single protein or other biomolecule may 
rarely act alone to perform a specific function among living organisms. 
Instead, a BP inside a cell is the result of a complex series of interactions 
between multiple biomolecules. The structure and topology of 
MINs can be used to identify biomolecules involved with biological 
processes. Here, constructed a combinatorial ALS-hr-Gs network 
consisted of transcription and post-transcriptional regulators (miRNAs) 
and explore the regulatory mechanism of ALS-hr-Gs up and regulated 
by TFs and miRNAs [Table 6]. It creates a scaffold combinatorial gene 
regulatory network that enables systematic research on the regulation 
of ALS genes. The connection among ALS-hr-Gs-miRNA-TFs could 
be a critical three-node motif of the network. Our impended pipeline 
can be expanded to discover conditional combinatorial regulatory 
landscapes correlating to distinct cellular situations. The identified 
potential regulators may be experimentally validated and used as a 
therapeutic biomarker for ALS-disease diagnosis.
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