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ABSTRACT

The Internet of things (IoT) empowers precise organization and intelligent coordination for industrial facilities and 
smart farming, enhancing agricultural efficiency. Sugar production relies on various auxiliary elements, but in labor-
intensive smart agriculture, creating accurate forecasts is a formidable challenge. Machine learning emerges as a 
potential solution, as current convolutional neural network-based phase recognition techniques struggle with long-
range dependencies. To address this, a temporal-based swin transformer network (TSTN) is introduced, comprising 
a swin transformer and long short-term memory (LSTM). The swin transformer employs attention mechanisms 
for expressive representations, while LSTM excels at extracting temporal data with long-range dependencies. The 
nutcracker optimizer algorithm (NOA) fine-tunes LSTM weights. TSTN effectively blends these components, 
providing spatiotemporal data with enhanced context. This model outperforms competitors in accuracy, as 
demonstrated through testing with data from Uttar Pradesh. The integration of IoT and TSTN marks a significant 
advancement in optimizing agricultural operations for increased productivity and efficiency. In the comparative 
analysis, the proposed TSTN-NOA model achieves better performance and results than other existing models.

ARTICLE HIGHLIGHTS

Sugarcane Yield prediction is carried out by Temporal-based Swin 
Transformer Network (TSTN), because existing CNN models are not 
very adequate for the extraction of long-range dependencies. The Swin 
Transformer incorporates the attention mechanism to encode remote 
dependencies and learn highly expressive representations. The proposed 
model is focused on Uttar Pradesh mainly because sugarcane was 
cultivated on 28.53 lakh hectares in Uttar Pradesh, which is more than any 
state in the country. To improve the classification accuracy, the Nutcracker 
optimizer algorithm is used for selecting the weight of the Long Short-
Term Memory that is one of the components in the TSTN model.

1. INTRODUCTION

In order to meet the growing need for food, industrialization, and 
more intense agricultural production have become more important. 

*Corresponding Author: 
V. Gokula Krishnan,  
Department of CSE, Saveetha School of Engineering,  
Saveetha Institute of Medical and Technical Sciences,  
Chennai, Tamil Nadu, India.  

The rapidly developing Internet of things (IoT) industry, which is 
leading the way in the new agricultural era, is putting forth a number 
of innovative ideas. By joining the IoT, research institutions and 
scientific groups hope to expand their reach and activity, bringing 
new technology and products to the agricultural sector. In 2000, 
with the advent of the Massachusetts Institute of Technology’s 
Auto-ID Center and subsequent reports, the concept of the IoT 
rose to prominence. These embedded technologies in the systems’ 
internal and exterior states allow for communication, perception, and 
connection in the IoT [1]. Many industry experts consider IoT to be 
the wave of the future because of its potential to boost the level of 
integration between final goods, schemes, and services. Healthcare 
amenities are just some of the many areas where IoT technologies 
shine [2].

Growing populations place a greater emphasis on agricultural 
output. According to the FAO’s projections, the global population 
will hit 9.73 billion in 2050 and rise to 11.2 billion in 2100 [3]. The 
request for artificial intelligence and the Internet in cyber-physical 
farm management is at the heart of the idea of “smart agriculture.” 
Because it permits the observation of shifts in climate conditions, 
soil properties, soil moisture, etc. [4], smart agriculture solves several 
problems associated with crop production. Because it enables objects 
to be linked together over the internet to be run autonomously [5], IoT 
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technology may connect numerous distant sensors, including robots, 
ground sensors, and drones.

Sugarcane, which contains between 15 and 17% sugar, grows best in 
tropical climates [6]. Before being delivered to the factory, where the 
procedure described in the present experiment would start, sugarcane 
was either manually or mechanically harvested [7]. In the mill, it was 
then put on a specific conveyor system and weighed, washed, and 
crushed. In addition, while the sugarcane was being crushed, juice was 
pushed out [8]. After the sugarcane was removed, its juice was mixed 
and delivered to the raw section. Paper is created from bagasse, which 
is primarily composed of cellulosic fibers, and it can also be used as 
fuel. The lime method is frequently suggested as a workable solution 
when it comes to eliminating the pollutants present in raw juice [9]. The 
unglued, concentrated juice was then transferred to the oven after being 
clarified and condensed in three or five steps using vacuum-connected 
evaporators. In addition, the baking process was completed in stages, 
frequently up to three [10,11]. In addition, the sugar associated with 
each mascuit was isolated from the wastewater by centrifuging the 
mascuit in the proper centrifuge apparatus [12]. The effluent from Bake 
A is considered to be for Bake B when utilizing a three-mascuit system, 
for example, and vice versa. The remaining molasses were collected 
after removing baking C from the centrifuge [13].

After reviewing the relevant literature, we use the capabilities of the 
proposed model to make predictions about all of the influential factors 
in sugar production [14]. In this study, we introduce a Swin Transformer 
network (TSTNet) that uses temporal information to address phase 
identification problems. TSTNet is an end-to-end network that 
can improve the effectiveness of long-distance data gathering and 
address the numerous issues with current approaches to surgical video 
analysis. To make up for the shortcomings of traditional recognition 
techniques in terms of long-distance dependency extraction, the model 
creates a unique TSTN for sugarcane yield analysis. TSTN introduces 
an attention approach to encode distant dependencies and extract 
aspects using Swin Transformer as a reference network. In order 
to learn interdependencies across large distances, long short-term 
memory (LSTM) is employed. End-to-end training is used to teach the 
network how to best extract spatiotemporal characteristics, which are 
richer in context. The nutcracker optimizer algorithm (NOA) model 
determines the optimal weight of the LSTM. Increasing production, 
decreasing damages, removing boredom from the assembly line, and 
taking prompt judgments are all examples of boosting manufacturing 
productivity.

2. RELATED WORKS

To meet the demands of sugarcane farmers in India, Atheeswaran 
et al. [15] offer a smart farming system that employs intelligent 
solutions based on soft computing. Three sugarcane qualities, including 
color, shape, and texture, and four sugarcane illnesses (Eyespot, Leaf 
Scald, and Boeng), are studied. With photos acting as training data for 
fuzzy and case-based reasoning methods, the accuracy of the feature 
extraction method’s performance was evaluated.

The approach reported by Ribeiro et al. [16] uses a convolutional 
neural network to extract crop lines from plantation photos. We 
compared U-Net, LinkNet, and PSPNet, three different network 
models. To extract the feature maps, we employed the VGG16 
network structure that had previously been trained on ImageNet for all 
networks. Training using a dataset created from the mixing of diverse 
plantations’ crops E (500), which enhances the network’s capacity 
to segment the pictures. The results showed that U-Net provides the 

best results for segmenting crop lines among the datasets examined. 
We also examined a line reconstruction method based on the Radon 
transform. The Dice coefficient goes down very slightly after the 
rebuilding. However, by resolving the disconnected crop lines and 
missing plants, it helps us get better segmentation results in some 
photos. These findings suggest that our method is a workable strategy 
for identifying crop lines in photos.

The MSVM-DAG-FFO technique presented by Senapaty et al. [17] 
provides farmers with access to and analysis of the processed soil data. 
To enter this cloud data, assess it, and anticipate the best crops to grow, 
an Android app was created. The FFO procedure is responsible for 
tuning the MSVM perfectly by deciding which kernel functions to use. 
Extensive experimental validation was performed at five distinct time 
points utilizing SVM, SVM kernel, decision tree, and MSVM-DAG-
FFO using real-time data from four distinct crops. The accuracy rate 
was found to be much higher when compared to other approaches. 
Over the course of the five iterations, the suggested model has an 
average accuracy of 0.969. If you want to know what crops will thrive 
in a certain region, this is the method to use. In addition, it is possible 
to save information about the soil’s health on a regular basis in an 
inexpensive cloud, which not only helps farmers make educated crop 
selections but also provides them with the data they need to make 
informed decisions about the mineral supplements they use.

A hybrid optimum machine learning approach (HOML-SL) for 
detecting illness in sugarcane leaves has been proposed by Selvakumar 
and Seetharaman [18]. To begin, we present a segmentation technique 
based on non-linear cluster optimization that removes the infected 
portion of a sugarcane leaf while preserving the rest of the leaf. 
Second, we create a method for picking the best features from a 
pool of candidates, and we do this with the help of the cross-layer 
optimization algorithm. Finally, we show how sugarcane leaf diseases 
may be categorized using a moth flame-based capsule algorithm when 
compared to others. In terms of precision, recall, and F-measure, the 
suggested HOML-SL illness detection method performs comparably 
to the best methods currently available.

Ali et al. [19] have summarized the innovative methods used to 
counteract the consequences of climate change while still producing 
sufficient agricultural yields. The technologies used for yield prediction 
and enhancement, as well as smart strategies for contemporary crop 
management techniques, are also covered. It has been demonstrated 
that in order to increase agricultural yields, smart farming practices 
and the IoT must be put into place. With an average simulation 
accuracy of up to 92%, it was shown that different neural networks 
and simulation models might help in yield prediction for improved 
decision support. For accurate monitoring of crop health and water 
availability, several methods have been described, including those for 
predicting yields, controlling pests, implementing smart irrigation, 
and identifying and classifying diseases. Energy consumption may 
be decreased by as much as 8% with the use of various numerical 
models and smart irrigation tools, and the cost of irrigation can be 
cut by 25.34% when using advanced irrigation rather than a system 
based on soil moisture. In addition to assisting in the modification of 
current irrigation and fertilizer management practices, yield prediction 
under different expected climatic circumstances leads to resource use 
efficiency and lucrative agricultural output. Diseases may be effectively 
controlled and yields maintained through the use of smart and precise 
disease management. Using image processing tools, such as a genetic 
algorithm, farmers may effectively control leaf diseases across a wide 
range of crops. Using neural networks to help with image processing, 
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researchers were able to obtain a detection and classification accuracy 
of 98% across a variety of crop illnesses. The effects of urbanization on 
food productivity have been examined, and prospective remedies, such 
as vertical farming and its numerous indoor production techniques, 
have been proposed. The use of artificial illumination with the goal of 
supplying and exploring is necessary for the better development and 
growth of a variety of horticultural produce.

The data base of a fuzzy inference system is developed with these 
climatic parameters in mind, as described by Sharma et al. [20]. 
Fuzzy rules are used by the multi-objective evolutionary procedure 
to determine the best time to plant crops and the best way to prevent 
the spread of pests. Fuzzy logic is used to determine the optimal 
planting times for crops in medium-grass environments, and an 
IoT sensor network monitoring architecture is proposed here. Rice 
and sugarcane crops are being tested at this time. The research was 
conducted at a farm near Gwalior, Madhya Pradesh, India. Wireless 
sensor nodes were set up around the field to record variables including 
soil moisture, precipitation, temperature, and more. IoT application 
development services use fuzzy logic to determine when it is best to 
grow crops, allowing farmers to avoid insect infestations and take 
other preventative measures for higher yields.

3. RESEARCH METHODOLOGY

3.1. Dataset Description
The economy of the Indian state of Uttar Pradesh is largely dependent 
on sugarcane. The terrain is fairly sloped, and the soil is primarily 
sandy loam. This region’s sugarcane harvest, referred to as “Eksali,” 
takes roughly a year to complete. Here, early cultivars are grown 
alongside more common mid-late cultivars like CoS 767, Cos 8432, 
Cos 99 and 259, etc., which are planted in February and March. Early 
cultivars include Co 0238, Co 98,014, CoS 8436, and CoS 88,230. 
Other important crops in the state include wheat, rice, mustard, 
maize, bajra, and a variety of seasonal vegetables and fruits. Since 
1999 and 2002, the Terra and Aqua satellites have been using the 
moderate-resolution imaging spectroradiometer (MODIS) sensor. It 
has a massive 2,330 km sweep width and offers images in 36 different 
spectral bands. They have spatial resolutions of 1000 m, 500 m, and 
250 m and orbit the Earth every 2 days.

Approximately forty-four major geophysical outputs are available 
from the MODIS sensor, which may be used for research into the 
atmosphere, land, and ocean on a global scale at medium resolution. 
It provides processed, high-level products that directly address the 
requirements of regional to global modeling and nursing, relieving 
end-users of the load of data processing. Vegetation indices, MOD 13: 
Normalized Difference Vegetation Index and Enhanced Vegetation 
Index were used in this investigation. Products for the research 
field were gathered with the use of a program called AppEEARS 
(Extraction and Exploration of Analysis-Ready Samples). Users of 
AppEEARS may quickly and easily apply spatial, temporal, and layer 
parameters to select geographic datasets. The standard precipitation 
index, calculated from the climate hazards center infrared precipitation 
with station data (CHIRPS) precipitation datasets, was also employed 
in this investigation. From 1981 until very recently, this data represents 
precipitation on a nearly worldwide scale. By combining satellite 
imagery with local station rain gauge data, CHIRPS provides a gridded 
rainfall time series for trend research.

Time-series yield information for Uttar Pradesh’s individual districts 
was culled from the states. The agricultural mask for the research 

region was extracted using the land-use land cover (50k) map available 
through thematic services on the Bhuvan Portal (Indian Geo-Platform 
of ISRO) [21].

The obtained data contains numerous challenging frames that are 
challenging to recognize effectively by visual cues. Therefore, it is 
critical to record interdependencies throughout time. Due to induction 
architectures, previous recognition approaches that rely on CNNs as the 
backbone network do not fully comprehend long-range correlations in 
pictures. The foregoing motivates our proposal of a Swin Transformer 
Network (TSTN) model for temporally-based agricultural yield 
recognition. Figure 1 shows the planning for implementing the IoT-
based model for sugarcane yield prediction.

3.2. TSTN
The swin transformer architecture is used to train the TSTN 
network, depending on the pre-training model weight of the data set. 
After that, swin transformer is used to record a variety of scales of 
visual information from individual images. Modeling the temporal 
information of successive frames is done via an LSTM network [22]. 
Our TSTN network naturally includes these two components and 
is fashion to provide spatiotemporal features with significant 
discriminating capability.

3.2.1. Swin transformer network
We have challenges in obtaining spatiotemporal characteristics with 
excellent identification performance due to the complexity of the 
surgical environment. We suggest employing the swin transformer, 
centered on its attention mechanism, to solve this challenging but 
important task, in contrast to prior methods that used CNNs as the 
gold standard network for recognition tasks.

There are four distinct stages in the swin transformer network. 
Its feature map resolution is the same as that of other popular 
convolutional networks (like VGG and ResNet). Bottom-level data 
processing is becoming increasingly localized. The top network 
processes less input overall, but this is offset by a wealth of semantic 
information that allows for seamless integration of multiscale aspects. 
There are two sequential swin transformer blocks on stage, with the 
linear embedding layer in between them. The following formula’s (1), 
(2), (3), and (4) are used for calculating swin transformer blocks, and 
Figure 2 depicts its layout:

( )( )1 1ˆl l lz W MSA LN z z− −= − + � (1)

( )( )ˆ ˆl l lz MLP LN z z= + � (2)

( )( )1ˆl l lz SW MSA LN z z+ = − + � (3)

( )( )1 1 1ˆ ˆl l lz MLP LN z z+ + += + � (4)

Where ˆlz  signifies the output structures of the module and zl  reflects 
the block l characteristics that were produced by MLP. In contrast to 
SW-MSA, which employs a shifted window partition design, W-MSA 
refers to a window-based self-attention technique that makes use of a 
conventional window partition arrangement. The multihead self-
attention mechanism of swin transformer, together with the network 
structure of multiscale attention fusion, not only establishes global 
connections between sequences but also completely extracts the 
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Figure 1: Internet of things based smart farming in sugarcane field.

Figure 2: Two successive Swin transformer blocks.

feature information of pictures at varying scales. A  more reliable 
feature representation for the yield recognition task is provided by the 
network’s ability to extract deep semantic information and merge 
superficial semantic information.

In this study, the pre-training model of a swin transformer is used 
to refine the entire dataset based on its performance on the massive 
dataset gathered during the first training. A D K complete connection 
layer with an initial value of 0 is added in lieu of the final prediction 
layer. The target dataset has K categories, and D is the D-dimensional 
feature vector.

3.2.2. LSTM network
It is challenging to correctly discern between phases of sugarcane yield 
methods using only visual information. Richer content and more useful 
information for process identification are provided by the spatiotemporal 
duality of the input pictures. Phase identification can benefit greatly 
from the efficient extraction of high-quality temporal characteristics. To 
get around this issue of long-term dependencies and extract additional 
temporal characteristics with contextual information, we employ LSTM.

While the LSTM’s exterior state ht RD of the hidden layer is output 
non-linearly, a new internal state ct RD is introduced for linear cyclic 
transfer. The swin transformer outputs feature information, and the 
current moment unit gets the state of the preceding moment (ht1). The 
mental state of the preceding instant is under the jurisdiction of the 
first forgetting gate - ft. The amount of data that must be stored in the 

candidate state at the present time is set by the input gate. When the 
forgetting gate is combined with the input gate, a new state value, ct, is 
produced; this value remembers events that occurred before the present 
time and replaces the previous neuron state, ct1, with the current state, 
ct. The whole network sets up long-range temporal relationships via the 
recurrent unit. The formulas (5), (6), and (7) depict the same as follows:
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When dealing with a long input sequence, LSTM’s gating mechanism 
keeps the network model’s gradient from disappearing. These studies 
are carried out entirely online. To train in an end-to-end fashion, 
the sequences are fed into TSTN. To be more specific, we feed the 
1024-dimensional characteristics generated by a swin transformer into 
a one-way LSTM-linked layer. The LSTM network is comprised of 512 
neurons and uses a 10-fold step size. During backpropagation, the swin 
transformer and LSTM share parameters that are optimized together. 
This allows for the extraction of spatiotemporal characteristics with 
a high degree of recognition. The anticipated picture frame classes 
are then output via a fully linked layer. The NOA model is used to 
determine the LSTM’s weight appropriately, as will be shown below.

3.2.2.1. Overview of NOA
Taking its cue from Clark’s nutcracker, [22] NOA is an innovative 
metaheuristic algorithm based on natural principles. The nutcracker 
gathers pine nuts (food) in the summer and fall, stashes them away, 
and then comes back to the stash in the spring and winter to forage for 
more. We drew inspiration from this concept of food availability to 
suggest two methods: (i) a foraging and caching approach, and (ii) a 
caching search and recovery method. Following population seeding, a 
fitness function of RMSE is applied to guide further rounds of random 
exploration and exploitation optimization.

3.2.2.2. Foraging and storage strategy
First, the nutcracker explores the environment in search of high-
quality seeds during the summer and fall months. Since the storage 
location is frequently far from the search area and has less foliage in 
the winter and spring, the nutcracker may find it easier to collect the 
seeds at those times.
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The formula for this tactic is shown in equations (8–11). The 
nutcracker’s hunt for nutritious seeds is depicted in Eqs. (8) and (9). 
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A mathematical model of the RP is given by Equations (12)–(15). 
AbdelBasset made the assumption that each cache had two reference 
points, leading to a two-column RP matrix in Equation (12). The 
two approaches to solving the RP are outlined by Equations (13) and 
(14). Equation (15) is utilized to modify RP with the second term in a 
linearly expanding form. Nutcracker retrieval is also characterized as a 
process of continuous learning from prior experiences.
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Formula (16) outlines the steps involved in the nutcracker’s second 
exploration phase, which include a search for seeds and the subsequent 
recovery of a cache from the storage region. Formulas (17) and (18) 
outline how to determine a new position by using the smaller of two 
starting points. According to the best possible answer Xbestj

t  and 
RPi

t� ���
,1  and RPi

t� ���
,2 , the using τ τ7 8,  random numbers to create a blend 

of the two anchor points, as demonstrated by Formula (19). In order to 
balance the exploration and expansion processes in accordance with 
this policy, Pa2 is used in the forage and storage strategy formula (8).

3.2.2.4. Implementation of NOA
When using NOA for optimization, it is necessary to seed the 
population within the constraints you establish:
� � � � ���� �
X u L RM L i N j Dij
t

j j j= −( ) + = … = …. , , ., , , , .,,1 1 2 1 2 � (21)

In accordance with their foraging and storage strategies, the nutcracker 
population then goes through an exploration and exploitation stage, 
followed by a cache search and retrieval stage. These two plans are 
executed simultaneously with 50/50 odds. Each nutcracker stands 
for an approach to the issue at hand. In the first phase, candidates 
are represented as potential food sources, and in the second phase, 
by caches. By using these techniques, fresh solutions are chosen 
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and evaluated to determine the values of the fitness function to be 
optimized.

Alpha, the fraction of attempts to avoid local optima, and Prb, the 
fraction of explorations of other regions in the search space, must 
be pre-set during the NOA’s initialization process along with the 
population size, search boundaries, and iterations. The values of Alpha 
= 5% and Prb = 0.2 were used for this article to strike a good balance 
between the exploration and exploitation phases, as suggested by 
the original code. In both approaches, it is crucial to adhere to the 
information-sharing mechanism and coordinate with one another to 
find a happy medium and avoid local optima in the solution space 
through both exploration and exploitation.

Initial samples are delivered into the network for this purpose, and 
the network then adjusts its parameters. With the aid of these recently 
trained network samples, the output is precise with little room for error. 
Table 1 displays the prediction of sugar output using the characteristics 
that are currently available.

Prediction phase data collection processes were carried out as an 
example. These data were used to train a model for future predictions. 
Data was submitted into the program either by the user performing 
manual laboratory experiments or by using control machines or 
accurate devices connected to the program through ports. If the mean 
or other dependent variable star requires computation, the software 
performs those computations and sends the results to the prediction 
model.

The total number of records equaled the sum of the findings of 
experiments done at intervals of 1 or 2 h at various stages of product 
processing. To forecast the outcome of the program and collect data 
for an artificial neural network. The average number of hours of data 
collected per day was transformed into new data. All patterns were 
organized into distinct sequences according to the nature of the labor 
involved at each stage of sugar production. Each series’ characteristics 
were also portrayed. The results of one stage are considered the input 
for the subsequent stage in the sugar manufacturing process due to the 
interconnected nature of the several steps involved in turning sugarcane 
into sugar. To rephrase, every segment is treated as a separate system 
whose number of inputs is equal to the number of characteristics of the 
one before it. As a result, these findings can be used to make inferences 
about the current system’s characteristics.

After being trained with some sample data, a neural network can make 
accurate predictions when presented with additional, unseen data. The 
extension mechanism, which is completely internal, is used to generate 
this result. In this stage, the software records the properties of each step 
in the process and feeds that information into the neural networks. The 
software then evaluates how accurately the artificial neural networks 
predicted the system’s output. In the event of a discrepancy between these 
two results, the program verifies the existence of an issue and prompts the 
user to take action; otherwise, it allows the user to go to the next stage of 
the procedure. The calculations would benefit from normalizing the data 
series first. At this point, we have tried using the following equation to 
normalize the database values to fall somewhere between zero and one.

The data were then normalized, with XN and XI standing for the 
standard and observational data, respectively. In addition, XMAX and 
XMIN show the maximum and minimum values, respectively, for the 
data set. To achieve this objective, we employed Eq. (22) [23].

X
X Xmin
Xmax Xminn =

−( )
−( ) � (22)

The networks were trained on a GTX1080 Ti 11GB GPU with 64GB 
of DDR4 2400MHz Duel Channel RAM. Software configuration on 
Windows 10 included Tensor flow GPU 2.4.1 and Keras 2.3.1.

4. RESULTS AND DISCUSSION

4.1. Performance Evaluation Metric
Classification metrics, including accuracy, precision, recall, and 
F-measure, were used to evaluate models and deep networks. The 
percentage of right detections is measured by accuracy, the percentage 
of relevant examples is measured by precision, and the percentage of 
relevant instances is measured by recall. When assessing a method’s 
overall performance, the F-measure is helpful because it considers 
both precision and recall.

Accuracy TP TN
TP FP FN TN

=
+

+ + +
� (23)

Recall TP
TP FN

=
+

� (24)

Precision TP
TP FP

=
+

� (25)

F measure Precision Recall
Precision Recall

− =
+

2.
. � (26)

Since the data are collected from the UP, the generic deep learning 
techniques are considered and tested with research work, and the 
results are averaged in Tables 2 and 3.

Table  2 above shows the proposed model’s analysis for 80–20% of 
the data. In this investigation, we compared the performance using 
a variety of methodologies. The accuracy calculation for the CNN 
model was 0.8834, the recall value was 0.8009, the precision value was 
0.8175, and lastly, the F-measure value was 0.8091. In another type, 
the RNN model reached an accuracy calculation of 0.8862, a recall 
value of 0.7492, a precision value of 0.8657, and finally an F-measure 
value of 0.8032, respectively. And then another model, the LSTM 
model, reached an accuracy calculation of 0.8605, a recall value of 
0.6661, a precision value of 0.8035, and finally an F-measure value 
of 0.7284, respectively. The method of the swin transformer model 
reached an accuracy calculation of 0.8390, a recall value of 0.6523, a 

Table 1: Remaining features for forecasting sugar yield.

Feature Description

Mixed juice Primary and secondary ingredients combined to create 
mixed juice

Bagasse The cane waste left over from crushing in a single mill or 
a series of mills

POL Sucrose consists of the monosaccharides glucose 
(dextrose, grape sugar, maize sugar, and blood sugar) and 
fructose (levulose, fruit sugar).

ASH What’s left over after burning a product according to 
certain circumstances

Fiber The dry, water‑insoluble matter in the cane

Clarified juice The finished product of the clarification process

Magma A mechanical crystals and molasses or weighty syrup

Molasses The sugar crystals in a massecuite are separated from 
the mother liquor, also known as moasses, when the 
massecuite is spun in a centrifugal machine.
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Table 2: Analysis of proposed model for 80–20% of data.

Model Accuracy Recall Precision F‑measure

CNN 0.8834 0.8009 0.8175 0.8091

RNN 0.8862 0.7492 0.8657 0.8032

LSTM 0.8605 0.6661 0.8035 0.7284

Swin transformer 0.8390 0.6523 0.7667 0.7049

TSTN 0.9032 0.8545 0.8734 0.8843

TSTN‑NOA 0.9442 0.9050 0.9203 0.9126

Table 3: Analysis of proposed model for 60–40% of data.

Model Accuracy Recall Precision F‑Measure

CNN 0.8604 0.6845 0.7818 0.7299

RNN 0.8234 0.6234 0.7323 0.6735

LSTM 0.8280 0.7086 0.6855 0.6969

Swin Transformer 0.8277 0.7992 0.7522 0.6002

TSTN 0.8867 0.8186 0.8090 0.8045

TSTN‑NOA 0.9173 0.8480 0.8530 0.8505

Figure 3: Graphical representation of proposed model in accuracy.

Figure 4: Recall analysis.

Figure 5: Comparison of various models in precision validation.

Figure 6: Validation on F-measure.

precision value of 0.7667, and finally an F-measure value of 0.7049. 
After the TSTN model reached the accuracy calculation of 0.9032, the 
recall value of 0.8545, the precision value of 0.8734, and finally the 
F-measure value of 0.8843. And also, the TSTN-NOA model reached 
an accuracy calculation of 0.9442, a recall value of 0.9050, another 
performance precision value of 0.9203, and finally an F-measure 
value of 0.9126, respectively. Through this comparison analysis, the 
proposed TSTN-NOA model reaches the better performance results 
than another compared model.

In the above Table 3, the analysis of the proposed model for 60–40% 
of the data. In this analysis ratio, the CNN model reaches an accuracy 
of 0.8604, the recall value is 0.6845; after that, the precision value is 
0.7818; and finally, the F-measure value is 0.7299, respectively. And 
also, another model of RNN model reaches an accuracy of 0.8234 and 
a recall value of 0.6234, after that; the precision value is 0.7323 and 
finally, the F-measure value is 0.6735, respectively. And also, another 
model of the LSTM model reaches an accuracy of 0.8280, the recall 
value is 0.7086; after that, the precision value is 0.6855, and finally, 
the F-measure value is 0.6969, respectively. And also, another model 
of the swin transformer model reaches an accuracy of 0.8277 and a 

recall value of 0.7992; after that, the precision value of 0.7522, and 
finally, the F-measure value is 0.6002, respectively. And also, another 
model of the TSTN model reaches an accuracy of 0.8867, a recall 
value of 0.8186, a precision value of 0.8090, and finally, an F-measure 
value of 0.8045, respectively. And also, another model of TSTN-NOA 
0.9173, and the recall value of 0.8480, and finally, the F-measure 
value is 0.8505, respectively. And also in the comparison analysis, the 
proposed TSTN-NOA model reaches the better performance results 
than other compared models. The below figures 3 and 6 shows the 
accuracy, recall, precision and F1-score values of various techniques 
used for comparison with the proposed method.
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5. CONCLUSION

This study recommends employing a TSTN to recognize sugarcane 
yield automatically. The swin transformer is the foundation of the 
TSTN, using attentional approaches to learn extremely emotive 
pictures and encode remote relationships. Second, to extract features 
with more contextual information, an LSTM network is used. The 
swin transformer and LSTM networks are combined in the TSTN, 
which is trained end-to-end using non-dominated optimization (NOA) 
to effectively tune both visual and temporal variables. Data mining 
methods will make it possible to predict future industrial productions 
like milk and juice. This method is highly advised for usage in factories 
since it enables step-by-step process control. This is particularly true 
when preserving a condition from the previous stage and comparing 
process variables like Pol, Brix, and Tonne to those of the following 
phase. It is vital to swiftly assess the data acquired at each stage in 
order to determine whether or not the work conducted there was 
appropriate in order to undertake an accurate evaluation of the process. 
When it comes to the repair stage, the system permits moving on to the 
next step of the process, but if a flaw is found after implementing that 
section of the manufacturing line, the system will stop you.
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