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ABSTRACT

Feeding the world with good agricultural and forestry practices is becoming a challenge and researchers are working 
on different approaches to find the most ecofriendly solution. Chemical fertilizers are increasingly being used, despite 
the fact that their intensive use has proven to have a harmful effect on soil, water, the environment, and, ultimately, 
plants and humans’ health. Biofertilizer has been considered a better option than other conventional fertilizers 
since it contains a typical population of helpful microorganisms that provide nutrients to the soil required by the 
plant without destroying the precious environment. However, in terms of understanding their proper mechanisms 
and importance for sustainable farming, efficient knowledge of microorganism-based biofertilizers remains in the 
shadows. This study aims to explore the different challenges faced regarding microorganism-based biofertilizer use 
in agriculture and forestry. It will support the overcoming of identified challenges and increase farmers’ acceptance 
as the main option to provide the required nutrition for the soil to obtain better quality and a higher quantity of 
agricultural products. Overall, priority should be given to developing advanced technology and proper storage 
mechanisms, distribution mechanisms, and subsidies in order to gain popularity and reliability. This article is timely 
because biofertilizers are currently undergoing manufacture and application; now is the time to identify challenges 
and solutions for research and development.

1. INTRODUCTION

Globally, land covers 29% of the earth’s surface, with glaciers accounting 
for 10% of the land, 19% is barren land, 32.7% of productive land is 
agricultural land, 27% forest land, 9.9% shrub land, 0.7% urban and 
built-up areas, and 0.7% freshwater [1]. Among productive terrestrial 
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ecosystems, the forest plays key roles in biodiversity conservation, 
carbon sequestration, and support for rural livelihoods [2-5]. Forest 
ecosystems have been classified primarily based on climate into 
boreal, temperate, and tropical ecosystems, with highly correlated 
distributions with land used and soil characteristics, with poor nutrient 
soils assigned to forests and high fertility soils assigned to agricultural 
land and grasslands. Forest productivity has been declining as a result 
of accelerated human and livestock population growth, forest fires, and 
exploitation of forest resources [6,7]. Human activities have resulted in 
continuous soil erosion, causing essential nutrient deficiencies in forest 
soils [8,9]. Moreover, the population of the world is expected to reach 
more than 9 billion shortly by 2050. There will be a huge challenge 
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ahead to feed this growing population, and our prime target would be 
to produce crops sustainably without hampering the ecosystem [10,11]. 
So for maximum production, farmers overused chemical fertilizers to 
provide the main plant nutrient elements, such as nitrogen, phosphorus, 
and potassium [12]. Overuse of chemical fertilizers increases soil 
acidity, decrease organic matter, humus, and beneficial organisms in 
the soil, stunt plant development, change the pH of the soil, feeds pests, 
and trigger emissions of greenhouse gases (GHG) [13]. Although the 
inefficiency in absorbing the nutrients causes the leaching of chemicals 
that are detrimental to the ecosystem, i.e., eutrophication, which 
means an increase in nutrient input to the level of overenrichment in 
surface waters, which results in an increase in primary production 
but will induce associated side effects. Hence, it threatens life in 
water and increases GHG emissions [14,15]. Globally, about 55% of 
GHG emissions are reported from agricultural land, and 6–11% of 
CH4 emissions are from anthropogenic sources [16,17]. Annually, the 
consumption of nitrogen fertilizer for growing rice has reached 7.66 
million metric tons, and adding too much nitrogen fertilizer will reduce 
nitrogen use effectiveness and increase soil GHG emissions from paddy 
fields [18,19]. Furthermore, chemical plant protection measures such 
as insecticide and fungicides application can reduce the population of 
essential pollinators and beneficial microorganisms in the soil [20,21].

In addition, due to intensive cropping in agriculture, the use of 
chemical fertilizers increased, which have high nitrogen and 
phosphorus contents and leach from agricultural fields into rivers, 
causing fish mortality, oxygen depletion, an acceleration of aquatic 
plant growth, and, finally, a decrease in water quality for a sustainable 
ecosystem [22-24]. Increasing nutrients in the aquatic ecosystem 
cause different bacteria to flourish, which results in a visible film or 
scum on the water’s surface that helps with algae decomposition and 
subsequently drops oxygen levels, eventually creating a dead zone 
where the aquatic animal cannot exist [25]. Various diseases developed 
as a result of the accumulation of synthetic chemicals through the food 
chain in birds and animals, having a direct impact on their population 
density and a negative impact on the ecosystem [26-28]. To facilitate 
sustainable agriculture in the production of food and fiber as well 
as to preserve and develop forests, the scientific community from 
across the world is concentrating on the employment of beneficial 
microbes [29-32]. By enhancing the soil with beneficial elements like 
nitrogen, vitamins, proteins, and water-holding capacity, biofertilizers 
are useful instruments in the agriculture ecosystem that help to lessen 
the negative effects of chemical fertilizers [33]. Microbes that are soil 
and plant-associated carry out valuable biogeochemical cycles and 
organic matter degradation to maintain a healthy ecosystem [34].

Hence, microbial-based biofertilizers are highly beneficial for soil 
health and sustainable agricultural production [35-37]. Plant growth-
promoting microorganisms (PGPM) are found in microbial-based 
biofertilizers, which are given to seeds or soil to benefit their hosts by 
reducing phytohormone production, boosting soil nutrient availability, 
enhancing plant nutrient uptake, and strengthening their resistance 
to diseases [38,39]. Furthermore, microbial-based biofertilizers can 
increase stress tolerance, prevent the adverse effects of salinity, fix 
nutrients in the root zone, control the plant pathogen biologically, and 
enhance the production of crops sustainably and economically [40-42]. 
As a result of microorganisms’ metabolic activity in biofertilizers, 
there is an increase in volatile organic compounds that affect plants and 
bacteria to control plant growth [43,44]. The necessary inoculum for 
the microorganism’s growth and multiplication can also be provided 
using biofertilizers continuously in a field for 3–4 years, which avoids 
the need for additional biofertilizer applications [45]. Despite the high 

number of patents on microbial inoculants, only a limited number have 
gone through commercial production for agricultural application in 
Asia (mainly China, and India), North America and Europe [46,47]. 
Moreover, responses of biofertilizers over different types of soil, crop, 
and environmental conditions, technological aspects of production, 
shelf life, and proper recommendation of biofertilizers uses are 
hindering the usage among farmers [48]. Therefore, biofertilizers have 
so far been unable to gain creditability in the commercial fertilizer 
market from the respective stakeholders (i.e., from farmers, producers 
and traders) [49]. This emphasizes the importance of education on the 
quality of formulations, their production and usage, cost effectiveness, 
quality indicators, and regulated requirements for the provision of 
legitimate items into the market and end user satisfaction. Researchers 
need to improve the technology to mitigate this inconstancy [50].

This review synthesizes knowledge of biofertilizer applications to 
provide organized insights about different microorganisms in terms of 
their efficacy for crop production. The application of this new review is 
to address the challenges in technology development and application, 
to improve biofertilizer production technology for sustainable crop 
production and forestry management, and to obtain food safety and 
security for future generations. The overall outline of the review is 
shown in [Figure 1].

2. ADDRESSING BIOFERTILIZERS FOR SUSTAINABLE 
AGRICULTURE

Enhancing crop production for the growing people of the world is a 
significant task in the 21st  century, while maintenance of ecological 
harmony is necessary. In this regard, sustainable agriculture is a global 
issue now [51]. The success of sustainable agricultural principles 
depends on more than just increasing crop yield; it also depends on 
maintaining environmental safety [52]. Chemical fertilizers should not 
be used in excess, since the residues have a negative impact on the soil’s 
ability to retain water and fertility and, most importantly, create an 
imbalance in the nutrients in the soil [53]. The human body will acquire 
hazardous compounds from plants grown with chemical fertilizers and 
pesticides [54]. Toxic chemicals and gases, including NH4, CO2, CH4, 
and others, are produced and released into the atmosphere as byproducts 
during the production of chemical fertilizers, marking the beginning of 
their negative impact on the environment [55]. Water pollution occurs 
when industrial waste is dumped into unfiltered water sources. Also 
covered is water eutrophication, the most damaging consequence 
of chemical waste accumulation in water bodies. Moreover, it is 
continued usage as a soil amendment leads to soil contamination by 
lowering soil quality [56,57].

In addition, only about half of the nitrogen fertilizer supplied to 
plants is actually used by them; the other 50% is lost to volatilization, 
organic compounds in clay soil reactions, and interference with 
surface and groundwater [58]. The most prevalent form of dissolved 
nitrogen found in groundwater or other bodies of water is nitrate, one 
of the crucial components of fertilizer. Human and animal health are 
negatively impacted by high concentrations of nitrites, nitrates, and 
nitrosamines [59]. High nitrate accumulation can result in (i) blue 
baby syndrome (acquired methemoglobinemia in infants); (ii) gastric 
cancer, (iii) other diseases such as goiter, congenital disabilities, and 
heart disease; and (iv) water eutrophication (mainly associated with 
nitrogen and phosphorus) [60].

The massive use of chemical fertilizers to increase crop productivity 
produces toxic GHGs that are degrading the ozone layer’s protective 
cover which means global warming and exposing people to dangerous 
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Figure 1: Overview of the manuscript.

ultraviolet rays [61]. Agricultural soils are the primary source of N2O 
emissions, accounting for 60% of anthropogenic N2O emissions [62]. 
The use of nitrogen fertilizer in excess contributes to the emission of 
nitrogen oxides (NO, N2O, and NO2), which is the main reason for air 
pollution [63]. The third most significant greenhouse gas after carbon 
dioxide and methane is nitrous oxide (N2O). It has 310  times more 
potential to cause global warming than carbon dioxide [64]. GHGs 
produced by the overuse of chemical fertilizers damage the climate. The 
regular use of chemical fertilizers exposes people to heavy metals like 
arsenic and cadmium, which are harmful to human health [65]. Using 
chemical fertilizers frequently could eventually lead to soil damage, 
the loss of microorganisms, and a host of other problems [66]. To make 
agriculture sustainable, it is necessary to implement a balanced and 
reasonable use of nutrients that are cost-effective and ecofriendly [67]. 
In this case, biofertilizer could be a suitable option [68,69].

The term “biological fertilizer,” also known as “micro inoculants” [37], 
was redirected to describe a substance containing living microorganisms 
that colonize the rhizosphere around the interior of the plant and 
promote development by improving the accessibility and uptake 
of mineral nutrients by the host plant [70,71]. Biofertilizers may 
solubilize plant nutrients and fix atmospheric nitrogen through the 
process of biological nitrogen fixation. They can also stimulate plant 
growth by synthesizing various growth-stimulating compounds, and 
their C: N ratio of 20:1 indicates their stability [72]. As biofertilizers 
are introduced, it is believed that the consumption of chemical 
fertilizers and pesticides will decrease [73]. In addition to allowing 
plants to obtain nutrients, some biofertilizers also produce several 
vitamins and phytohormones that contribute to plant growth [74,75]. 
Based on their purposes and modes of operation, biofertilizers are 
divided into many categories (Meena et al. [67]; [Table 1]). Agriculture 
techniques and the physical and chemical characteristics of the soil 
play a big role in the prevalence of bacteria in the soil. To achieve 
sustainable agriculture objectives in the future, nitrogen fixation and 
plant growth promotion by bacteria will be essential. Microbes also 
contribute to the ecosystem’s numerous nutrient cycles. According to 
the type of microbes utilized and their mode of action, biofertilizers are 
categorized in Table 1 with appropriate examples.

The microbial community modifies the soil by improving nutrient 
availability, nutrient uptake, and nutrient solubility [76]. Bacteria play 

an important role in the availability of essential micronutrients and 
macronutrients to plants. The main jobs of microorganisms include fixing 
nitrogen in the soil, converting phosphorus into a form that plants can 
absorb, synthesizing compounds that stimulate plant development, and 
protecting plants from pathogenic organisms that can infect them with 
illness [77,78]. In addition, bacteria create phytohormones, which play a 
significant role in controlling plant growth, have a significant impact on 
plant metabolism, and promote the plant’s reaction to stress [79].

3. BIOFERTILIZER APPLICATION IN AGRICULTURE

The use of biofertilizers in the agriculture sector has become 
increasingly popular due to thorough studies on agricultural crops, but 
there is comparatively limited documentation throughout the literature 
regarding their effects on forestry species [80].

3.1. Mode of Action of Biofertilizer
The different mechanisms of action of biofertilizers, including nutrient 
uptake facilitation, phytohormone regulation, and phytoprotection, 
must be understood to effectively utilize their potential for increasing 
the ecological services of forest biomes and promoting production in 
agriculture sectors [32]. By supplying vital nutrients such as nitrogen, 
phosphorous, and potassium, biofertilizers preserve the soil’s natural 
qualities (Aloo et al. [81]; [Figure  2]). PGPMs are categorized 
into three major divisions: Arbuscular mycorrhizal fungi (AMF), 
plant growth-promoting rhizobacteria (PGPR), and nitrogen-fixing 
rhizobia [82]. PGPRs help plants grow and develop by making it 
easier for plants to take in nutrients (N2 fixation and P solubilization), 
causing the root surface to grow (hormone production), or reducing the 
damage caused by pathogens, which is a sustainable way to increase 
crop yield [83]. Beneficial bacteria, including RHIZOBIUM [84], 
AZOTOBACTER [85], and AZOSPIRILLUM [86], have the capacity 
to fix atmospheric nitrogen into a form that is easily available 
for plant absorption and support plant development [Figure  3]. 
Phosphorus-solubilizing microorganisms, including PSEUDOMONAS 
and BACILLUS, may solubilize and mineralize both organic and 
inorganic phosphorus [87], making it available for plant absorption. 
In addition, several biofertilizers, such as AZOTOBACTER and 
AZOSPIRILLUM, release chemicals that promote root growth and 
aid in enhancing nutrient uptake [88,89]. Then, some biofertilizers, 
including AZOTOBACTER, AZOSPIRILLUM, and BACILLUS [90], 
release hormones that encourage plant growth, including auxins [91], 
gibberellins, and cytokinins. In addition to supporting root growth, 
blooming, and fruiting, these hormones assist in controlling plant 
growth and development.

In addition, biofertilizers can shield plants from a variety of biotic 
and abiotic stressors [92,93]. By producing antibiotics and other 
antifungal substances, for instance, they help reduce the severity of 
soil-borne infections [94]. They can also improve soil fertility and 
reduce environmental pollution by binding metals, which decrease the 
toxicity of heavy metals [95]. In addition, biofertilizers can encourage 
the formation of phenolic compounds, which are naturally occurring 
poisons that help protect plants from harmful organisms, which in turn 
can promote plant defense mechanisms[96].

3.2. Status of Biofertilizer Application in Agriculture and 
Forestry
In many parts of the world, particularly in developing countries, 
market momentum has increased due to concerns about sustainable 
agricultural and forest management, notably integrated nutrient 
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Table 1: Classification of biofertilizers with reaction mechanism and examples.

Biofertilizers Crops Reaction mechanism Groups Examples References

Nitrogen‑fixing Chickpea, white 
spruce

Increase soil nitrogen 
content by fixing 
atmospheric N and making 
it available to the plants

Free‑living Azotobacter, Anabaena, 
Clostridium, Aulosira, Bejerinkia, 
Nostoc, Klebsiella, Stigonema, 
Desulfovibrio, Rhodospirillum, and 
Rhodopseudomonas

[186‑190]

Pea Symbiotic Rhizobium, Frankia, Anabaena 
azollae, and Trichodesmium

Lavendar Associative 
symbiotic

Azospirillum spp., Herbaspirillum 
spp., Alcaligenes, Enterobacter, 
Azoarcus spp., and Acetobacter 
diazotrophicus

Phosphorus 
solubilizing

Chickpea, Wheat, 
Mangrove

Solubilize the insoluble 
forms of P in the soil into 
soluble forms by secreting 
organic acids and lowering 
soil pH to dissolve bound 
phosphates

Bacteria Bacillus circulans, Bacillus subtilis, 
Pseudomonas striata, Penicillium 
spp., Bacillus polymyxa, Microccocus 
agrobacterium, Aereobacter and 
Flavobacterium

[187,191‑194]

Wheat Fungi Penicillium spp., Aspergillus awamori, 
and Trichoderma

Phosphorus 
mobilizing

‑ Transfer phosphorus from 
the soil to the root cortex

Mycorrhiza Arbuscular mycorrhiza, Glomus spp., 
Gigaspora spp., Acaulospora spp., 
Scutellospora spp., and Sclerocystis 
spp.

[195]

Potassium 
solubilizing

‑ Solubilize potassium 
(silicates) by producing 
organic acids that 
decompose silicates and 
help in the removal of 
metal ions and make them 
available to plants

Bacteria Bacillus mucilaginous, Bacillus 
circulanscan, Bacillus edaphicus, and 
Arthrobacter spp.

[196]

‑ Fungi Aspergillus niger

Potassium 
mobilizing

Wheat Mobilize the inaccessible 
forms of potassium in the 
soil

Bacteria Bacillus spp. [197‑199]

Maize Fungi Aspergillus niger

Micronutrient Onion, Maize, 
Pumpkin

Oxidizing sulfur to sulfates 
that are usable by plants

Sulfur oxidizing Thiobacillus spp. [74,200,201]

Wheat, Maize Solubilize the zinc by 
proton, chelated ligands, 
acidification, and by 
oxidoreductive systems

Zinc solubilizing Mycorhiza pseudomonas spp., and 
Bacillus spp.

[202‑204]

Plant Growth 
Promoting

Rice, Bitter 
gourd, Gladiolus, 
Chrysanthemum, 
Petunia, Pinus

Produce hormones that 
promote root growth, 
improve nutrient 
availability, and improve 
crop yield

Plant 
growth‑promoting 
rhizobacteria

Pseudomonas spp., Agrobacterium, 
Pseudomonas fluorescens, 
Arthrobacter, Erwinia, Bacillus, 
Rhizobium, Enterobacter, 
Streptomyces, and Xanthomonas

[83,205‑210]

management. As a result, the use of biofertilizers AMF, phosphorus-
solubilizing bacteria (PSB), AZOSPIRILLUM, AZOTOBACTER, 
RHIZOBIUM, ACETOBACTER, seaweeds, etc.) has received more 
attention [97,98]. Demand for biofertilizers has unexpectedly 
increased in China, Canada, Argentina, and Europe, particularly in 
Spain, Italy, and Germany, as well as in the United States, India, and 
Africa [99,100]. These nations are putting a lot of effort into promoting 
the use and development of biofertilizers as a result of their growing 
demand for organic products and the realization of the great benefits 
that these fertilizers provide [101-103]. The global organic agricultural 
area is increased from 69.4 million hectares in 2017–74.9 million 
hectares in 2020, according to FiBL data [104]. The consumption of 
organic products, including biofertilizers, has increased along with the 
adoption of more organic farming techniques, which has enhanced 
soil fertility. However, plants get benefits when biofertilizers are 

used as seed or soil inoculants because they grow and take part in the 
nutrient cycle. In agriculture and forestry, biofertilizers are becoming 
more popular since they offer an alternative to chemical fertilizers, 
are less expensive, improve soil health, and increase production by 
10–25% without harming the soil or the environment [105]. The use 
of biofertilizers can also help to reduce soil erosion and improve 
water retention [106], making it an attractive option for agriculture 
and forestry. Recently, research has focused on biofertilizers to 
improve soil fertility by reducing the salinization of soil [107], 
phytoremediation of metal-contaminated soils [108], and increasing 
the tolerance capacity to extreme events [109] to maximize agricultural 
yields. Some of the research has progressed from the laboratory to the 
field trial stage. Research has focused on the continuous improvement 
of technology to reduce costs, maintain quality, and increase the 
popularity of biofertilizers among farmers. New technology such as 
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Figure 2: The beneficial mechanisms of microbial strains as a biofertilizer 
and their role in maintaining soil fertility and enhancing crop productivity.

Figure 3: Role of biofertilizers on physiological and biochemical  
properties of soil.

nanotechnology, introduced as nano-fertilizers, nano-biofertilizers, 
nano-pesticides, and nutrients, has aided in the development of 
advanced, low-cost, and environmentally friendly fertilizers [82]. To 
restore functional and resilient agricultural microbiomes in the modern 
era, high-throughput sequencing has been proposed as an adequate 
strategy to select the “missing pieces” (i.e., those microbes involved 
directly and/or indirectly in soil P cycling whose populations were 
disturbed or unbalanced due to unsustainable intensive agricultural 
practices) [110,111].

3.3. Application of Biofertilizer in Forestry and its Impacts
In forest ecosystems, bio-fertilizers can be an integral part of integrated 
nutrient management where nitrogen fixers, potassium and phosphorus 
solubilizers, growth-promoting rhizobacteria (PGPRs), endo-  and 
ectomycorrhizal fungi (ECMF), cyanobacteria, and other beneficial 
microorganisms are used to improve nutrient and water uptake, plant 
growth, and plant tolerance to abiotic and biotic factors [9]. ECMF play 
a crucial role in the nutrient cycle in terrestrial ecosystems, particularly 
in forest ecosystems where ECMF forms a symbiotic relationship by 
forming a mantle and Hartig network of intercellular hyphae in the 
roots of forest species [112]. This relationship provides significant 
benefits for the restoration of forests and ecosystem soil aggregation 

and stabilization [113]. In addition, ECMF and mycorrhizal helper 
bacteria promote the growth of economically significant trees and cut 
fertilizer costs in an ecofriendly manner [114].

More than 7000 different species of fungi generate 
ectomycorrhizae [115], many of which are associated with significant 
commercial trees such as poplar, birch, oak, pine, and spruce [116]. 
ECMFs are symbionts with most temperate and boreal forest trees, 
providing soil nutrients and water in exchange for plant carbon, and 
they are also used to restore sites contaminated with heavy metals, 
affected by soil erosion, and degraded due to clear-cut logging and 
wildfire [117]. ECMF nursery inoculation enhanced the performance 
of conifers planted in oil sands reclamation regions on degraded 
gypsum soil [118]. Even ECMF appears to be particularly efficient 
in recovering heavy metal-contaminated forest soils [119]. Recent 
years have seen the discovery of many ECMF isolates and associated 
hosts with increased metal tolerance [120]. In tropical forests of 
New Caledonia that have been degraded by mining activity, the 
ECMF species Pisolithus albus has been employed as an inoculant 
of ectomycorrhizal endemic hosts (Acacia spirorbis and Eucalyptus 
globulus) to enhance plant growth and act as a protective barrier to 
hazardous metals [121].

In addition, ECMFs were used to restore clear-cut logging sites, and 
it was found that soil transfers from mature adjacent forests helped 
form ectomycorrhizas by getting rid of harmful rhizosphere bacteria. 
This makes the clear-cut habitat a good place for organisms that were 
already living there [122]. Moreover, depending on the intensity and 
frequency of fire, some ECMF species have the ability to sustain forest 
fires; these fungi may be important for bringing in new ectomycorrhizal 
plant hosts and making the soil more stable through leached nitrogen 
(ammonium (NH4+) and nitrate (NO3- form) captured and transferred 
to remaining hosts in the post-fire area [123,124]. ECMF also has 
potential for use in restoring sites invaded by non-native plant 
species [125]. The invasion of pine trees into the Southern Hemisphere 
is one of the most widespread invasions of non-native species on Earth. 
It has turned native forests, grasslands, and shrublands into forests 
dominated by conifers and forced different ECMF communities to 
live together in their natural habitats [126]. However, pine invasions 
into native forests are always linked to a small number of non-native 
and invasive ECMF species taking over the roots of the pine [127]. 
Even though Pinaceae species spread quickly, they are often planted 
for forestry [128]. A different way to stop or slow the spread of pine 
hosts is to use non-invasive ECMF as inoculants for new plantations.

Plant growth is also affected by the make-up and activity of the 
associated bacterial community (phytomicrobiome), especially in the 
rhizosphere [129]. Plant-growth-promoting rhizobacteria (PGPR) can 
stimulate many direct and indirect mechanisms, such as phosphate 
solubilization, nitrogen fixation (N2-fixing), and phytohormone 
production [130]. Early seedling establishment is difficult in semi-arid 
forests, particularly in oak (Q. brantii) forests in Western Iran, but the 
use of biochar and PGPR is effective in controlling water stress in oak 
seedlings [131]. Brevibacillus reuszeri MPT17 strain of PGPR helps 
Carya illinoinensis roots grow and boosts nutrient levels in plants and 
the soil around their roots, especially by making more phosphorus 
and potassium available [132]. Rhizosphere-promoting bacteria, such 
as Bacillus paramycoides JYZ-SD5, and the ectomycorrhizal fungus, 
Schizophyllum commune, both help Metasequoia glyptostroboides grow 
even when it is under a lot of stress from salt [133]. Furthermore, nitrogen 
(N2-) fixation by moss-associated CYANOBACTERIA can promote moss 
growth and is an important source of new nitrogen in Eastern Canadian 
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boreal forest ecosystems [134]. CYANOBACTERIA conduct massive 
amounts of nitrogen to forest ecosystems through nitrogen fixation, 
colonize feather mosses such as Hylocomium splendens and Pleurozium 
schreberi in the subalpine forests of Mt. Fuji [135].

Studies have shown that the use of biofertilizers in silviculture can 
increase tree growth, yield, and quality [136]. The AZOTOBACTER was 
found to be more effective at increasing organic matter and nitrogen, 
whereas the PSB treatment is more effective at increasing phosphorus 
and potassium. The PSB mobilizes restricted Phosphorus into a form 
that is available to the plants, which leads to the growth of seedlings 
[80]. As some examples, growth promoting bacteria isolates such as 
Lysinibacillus sphaericus, Paenibacillusquercus, Paramyrothecium 
roridum, and Lysinibacillus fusiformis displayed significant potentiality 
to increased growth of Eucalyptus pellita. The application of this 
biofertilizer to developing or recently grown Eucalyptus pellita in 
the field warrants further study. To determine whether the isolated 
strains from the consortia are successful at promoting plant growth in 
the cultivation of Eucalyptus pellita under pot trial conditions [137]. 
Forest biomes are rich in microbes and many aspects of the dynamics of 
microorganism values in their assemblages and their interactions with 
hosts remain unknown and require further investigation.

4. CHALLENGES OF BIOFERTILIZER APPLICATION

Biofertilizers are renewable, ecofriendly, safe, and cost-effective; 
however, they face some application-related difficulties. It has sluggish 
action, formulation complexity, high sensitivity to temperature and 
moisture, absence of a specific microbial strain, lack of suitable facilities 
for the manufacture of biofertilizer, lack of skilled labor, seasonal-
based demand due to microbial activity, production regulation, market 
demand, and other issues that affect the impact of this approach in 
production, marketing, or practicality and usage [138]. However, as 
demonstrated by the use of AZOSPIRILLUM, the effectiveness of 
any biofertilizer application in forestry depends on the creation of 
microbial strains and inoculums, including formulations and field 
testing methodologies [139].

4.1. Formulation Complexity
The use of biofertilizers is receiving more attention and several of the 
products are currently offered globally [140]. In biofertilizers with living 
microbial cells, the formulation is one of the key elements that greatly 
influence the quality of the biological agents [35]. The preparation of 
inoculants is a critical multi-step procedure that involves one or more 
strains of microorganisms, an appropriate carrier, and additives that 
offer a safe habitat to protect them in challenging circumstances during 
storage, survival of strains, transportation, and establishment after 
introduction into soils. An efficient preface of microorganisms at the 
target region is provided by the right formulation, which also increases 
their activity once they have been injected into the host [141,142]. 
Another meaningful aspect is cost-effectiveness, which should be 
considered when selecting formulated products [143]. For commercial 
biofertilizer production, different carriers and organic matter should be 
available and cheap [144].

However, one of the key challenges for developing an improved 
formulation under field conditions is that a microorganism shows 
promising results under laboratory conditions. Manufacturers chose two 
or more types of microorganisms (e.g., RHIZOBIA and AMF, RHIZOBIA 
and PSB, diverse strains of AMF, or PSB) in a single product which 
help to maximize the resulting benefits for the host plants shown in 
several studies [39,71]. There are four types of biofertilizers, depending 

on the carrier’s physical characteristics and the material employed: 
formulations using solid carriers, liquid carriers, formulations with 
polymer entrapped carriers, and pressurized dry carriers [145].

Beneficial microorganisms’ metabolic activity quickly declines after 
production in liquid formulations [15,146,147]. Contrarily, solid 
formulations are problematic for non-sporulating bacteria because 
desiccation damages cell membranes, leading to cell death and loss of 
viability during rehydration, which has a significant negative impact 
on the commercialization of the product [148]. Despite the benefits 
of using the immobilized-cell formulation, it has still a limitation in 
large-scale production and field application because of the relatively 
high production cost [49,71,149,150], for the reason that the cost of 
polymeric carrier is high than the other methods [151]. Furthermore, 
cell mortality is one of the key difficulties of the bio-encapsulation 
process during the drying of encapsulated cells [150]. One of the major 
limits for polymer entrapped formulation is the survival of inoculums 
as low oxygen transfer [152].

Short shelf life and contamination are the key drawbacks of fluidized-
bed dry formulation because of the moisture content of carrier-based 
inoculants [153]. In addition, safeguarding the finished product against 
infection is essential because unauthorized microorganisms have the 
power to completely alter the strain’s characteristics. However, it is 
essential to generate the strain in a sterile setting, which could raise 
production costs [154]. However, it is needed to improve formulations 
which are more effective, stable over time, better in quality, more 
consistent, cost-effective, and meet farmers’ needs.

4.2. Efficacy Changes with Climatic Conditions
The harsh and unpredictable environmental condition affects the efficacy 
of bio-formulation technology. Inoculants are subjected to biotic stress 
factors (such as microflora and microfauna) as well as abiotic stress 
conditions (such as soil pH, temperature, and salinity) during soil 
application [148]. In semi-arid environments, introduced inoculums 
struggle to survive inclement weather, including droughts, high salinity, 
inadequate irrigation, and even soil erosion, which quickly depletes 
the imported bacteria. In addition, bacteria have poorer tolerance for 
physical stress, particularly different temperature variations that occur 
during storage in peat carriers [152]. Due to their sensitivity to diverse 
environmental circumstances such as heat or drought, several biocontrol 
strains of bacteria are Gram-negative, which complicates their 
bioformulations [155]. Therefore, changing temperatures affect how 
adaptable and useful the microbial strains are: To solubilize Phosphorus 
(P) in pine forests under subfreezing temperatures, a PSB that is 
adapted to cold climates should be physiologically active. As a result of 
their functionality at room temperature, however, the psychrotolerant 
PSB species are likewise excellent options for P biofertilizers in 
any situation [156]. Nevertheless, the frequent use of plant growth 
promoting bacteria (PGPB) faces challenges during applications due 
to its inconsistent behavior and viability, particularly because PGPB 
cannot efficiently cover many plant species, its field application can 
generate inconsistent productivity, and the surrounding environment 
and microbial community can affect PGPB activity [83,157]. Finally, 
because of their poor growth in the culture system compared to 
their native habitat, many isolated PGPB species may find massive 
production difficult [158].

However, including giving due consideration to the rapidly changing 
global climate and region-specific forecasted conditions over the 
coming decades, which may affect product suitability and efficacy.
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4.3. Storage Conditions
Microbial survival, carrier material qualities, biological effectiveness, 
and product storage life are all affected by storage conditions 
such as temperature, humidity, and sunlight intensity [159]. The 
carrier should maintain the viability of the microorganisms during 
storage in the farmer’s warehouse and have a lengthy shelf life and 
stability [150]. For the biofertilizer to be effective in the field, it must 
contain a sufficient number of viable cells during storage [160]. The 
shelf life of biofertilizers is another significant problem that can occur 
while using them. Live microbial cells used in biofertilizers have a 
limited shelf life (about 4–6 months under 20–25°C), and their storage 
and shipment require additional care and attention, increasing the 
cost of the product [110]. Biofertilizer should be stored properly, 
particularly at the correct temperature, to prevent the number of viable 
bacterial cells in the biofertilizer from falling below 108 cfu/mL. The 
lengthy shelf life of Acinetobacter baumannii, exceeding the required 
minimum of 108 cfu/mL at 6 months of storage, makes it a desirable 
biofertilizer product [161].

Biofertilizer should be kept cool, ideally in the refrigerator, to maintain 
their quality and shelf life. The recommended storage temperature 
for optimal efficiency and extended shelf life has been identified as 
4°C [99]. The best storage temperature for Azotobacter venelandi 
NDD-CK-1 for up to 90  days was found to be 5°C, implying that 
inoculum can be stored at a low temperature for a prolonged shelf 
life [99]. On the other hand, Burkholderia spp. held at 28°C for 
2 months grew more viable than those stored at 4°C, indicating that 
28 °C is the best temperature for the studied rhizobia [160]. Whenever 
a 4°C inoculum is to be utilized, it must be cultured at 26°C for at 
least 7  days to commence microbial multiplication and achieve the 
requisite viable cell quantity. Biofertilizer stability and quality are 
very much dependent on storage conditions [162]. However, the above 
circumstance accounts for the product’s infrequent availability in rural 
locations [163].

4.4. Practicalities of Biofertilizer Application
Several methods of applying biofertilizers to soil exist, including 
root dipping, seed inoculation, and soil treatment using dry or liquid 
biofertilizers [29]. To create slurry for seed inoculation, carrier 
biofertilizers are diluted in water. To ensure that all of the inoculants 
are evenly distributed, sterile seeds are added to the slurry. The mixture 
is then air-dried before being planted. The root-dipping biofertilizer 
application technique is utilized for transplanted crops. Before being 
transplanted, the plant’s root is briefly submerged in a mixture of 
biofertilizer and water. Biofertilizer is applied as a foliar spray or as a 
soil application at a specific time when the farmer is prepared to plant 
the seed [164].

The use of biofertilizers is a biological strategy for the long-term 
sustainability of agriculture. However, there are significant obstacles 
to their use in enhancing agricultural output. As a result of biotic and 
abiotic stress, biofertilizers frequently perform less effectively in the 
field than they do in the laboratory or greenhouse [165]. Crops are grown 
in a variety of climates, soil types, levels of rainfall, crop varieties, 
and soil biodiversity. Because of these differences, the effectiveness 
of biofertilizers varies. In addition, because the inoculum needs time 
to colonize the root and increase its concentration, biofertilizers 
take longer to act than synthetic fertilizers [163]. The adoption of 
biofertilizers by farmers may be impacted by these reactions. The main 
issues with the use of biofertilizer include a lack of understanding 
within farmer communities of the value of microbial biofertilizer in 

terms of protecting the environment, inadequate encouragement, and 
promotion of the use of biofertilizer products by agricultural extension 
workers to farmers, a lack of acceptable carriers for the formulation 
of biofertilizer, and a lack of storage facilities [157,166]. In addition, 
because most biofertilizers are selective in their operations, the lack 
of labeling that indicates the expiration date and the identity of the 
microorganisms responsible for the biofertilizer’s formation may cast 
doubt on the validity of the materials [47].

4.5. Market Value
At present, people are focused on organic farming due to rising health 
concerns. As a result, consumers in developing countries are interested 
in biofertilizers, and the market for these products is expanding [167], 
as well as in developed countries such as Spain, Italy, and Germany, 
where there has been a surprising increase in biofertilizer demand [168]. 
The value of the worldwide biofertilizer market was $1.88 billion 
in 2022, and it is anticipated to reach $2.14 billion in 2023. With a 
compound annual growth rate (CAGR) of 13.2%, the biofertilizer 
market is projected to reach $3.51 billion in 2027 [169]. Legumes 
and N2-fixing inoculants now dominate the global biofertilizer 
market [170]. According to the literature, rhizobia-based inoculants 
account for about 78% of the global biofertilizer market, whereas 
phosphate solubilizes and other bio inoculants account for 15% and 
7%, respectively [167,170].

As per reports, India is the world’s fourth-largest user of Potassium bio 
inoculants, whereas the United States, China, and Brazil top the list 
in terms of the total consumption of these microbial products [171]. 
When looking at the market by geography, specifically by continents, 
North America dominates the global market for biofertilizers, 
closely followed by Europe in second place and Asia-Pacific in third 
place [172]. The remainder of the world has been grouped, with 
South America rising to take the top spot. The biofertilizer industry 
is expanding internationally as a result of the desire to boost food 
production sustainably [70].

5. FUTURE RESEARCH DIRECTIONS

The importance of biofertilizers has been realized all over the world 
but research gaps still exist. The field efficiency of biofertilizers has 
to be improved by research and development. It may be possible to 
identify a unique application and enhance the inherent potential of the 
soil and the plant microbiome with new insights into how beneficial 
bacteria encourage plant growth. Plant development and growth are 
significantly influenced by the microbial ecosystem that already exists 
in plants. As a result, researchers need to focus on the biofertilizers’ 
capacity to alter the pre-existing microbiome [99]. In addition, the topic 
of forest biofertilizers has a significant research gap. For deciduous 
trees, no field data have ever been gathered yet, but coniferous species 
have collected few field data. Further, the majority of laboratory and 
greenhouse experiments have failed to transfer to the field. Hence, 
future research in this area could provide valuable information that 
will help us to comprehend the many biotic interactions that take place 
in any forest [32].

It is important to discover and develop inoculant strains of high efficiency, 
which should be effective under different soil conditions and plant 
species. The study of mechanisms related to the ecology and physiology 
of RHIZOBACTERIA as biofertilizers in different soil conditions has to 
be investigated elaborately. Therefore, it is necessary to conduct an in 
vitro and in vivo investigation of the physiology of inoculant cells in 
various soil types. In addition, careful research must be done on how 
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bacteria are monitored after inoculation and how they evolve over time. 
Therefore, it is necessary to develop cutting-edge molecular analysis, 
visualization technology, microorganism engineering, biotechnology, 
and functional genomics investigations [173].

Metagenomics has a role in better understanding microbial communities, 
and it is a growing field. In the case of a plant rhizosphere, it is a colony 
of different microorganisms, and these microbial genes interact with 
plant genes [174]. However, it is important to conduct more elaborate 
research on areas such as metatranscriptomic and metaproteomics and 
their relation with plant growth [175]. Initial biofertilizers are hosts 
of non-transformed bacterial strains, which results in good efficiency. 
However, the establishment of genetically modified strains is necessary 
because they are becoming more and more successful at stimulating 
plant development. There is a wrong perception among general people 
that genetically designed strains are not safe for the environment 
[93]. Researchers and communicators have to demonstrate to general 
people and administrations that these strains do not pose any hazards. 
These biofertilizers must have the potential to support microbial life in 
unfavorable soil environments. Furthermore, financial evaluations for 
various agricultural outputs should be conducted [176].

According to keystone taxa, biofertilization can be employed to maximize 
the results by controlling the growth and function of other individuals 
in the plant microbiome. Designing microbial communities can benefit 
from greater research into these taxa. In addition, novel isolates exhibiting 
biofertilizer features should be found using culture-based methods [177]. 
The efficiency of biofertilizers can be increased by plant prebiotics, which 
function as signaling molecules to draw in helpful bacteria. It is important 
to keep track of the findings from these investigations conducted under 
various environmental circumstances, targeted plant genotypes, soil 
types, and growing seasons in a global database [110].

Azospirillum contributes to plant growth enhancement through 
N-fixing, and later research revealed that glutamine synthetase mutants 
of Azospirillum provide greater growth than the original type [86]. 
Similarly to this, various mutants can be produced, examined, and 
compared with their parental types to produce better results in the 
future. Plant growth and development are directly impacted by several 
enzymes, including 1-aminocyclopropane-1-carboxylate (ACC). The 
ACC deaminase gene was discovered, extracted from Pseudomonas 
putida, and introduced into other bacteria to create PGPB [89], which 
in turn stimulates plant growth and productivity. Therefore, we should 
look for these genes and use biotechnology techniques to create 
genetically engineered plant growth-promoting bacteria in the future, 
which offer a new strategy for indestructible agricultural growth.

A lot of research has shown that some strains of the three main groups 
of microorganisms in the rhizosphere — AMF, yeasts, and bacteria 
— can make their host plants more resistant to drought by showing 
different plant growth promoting (PGP) traits. With this information in 
mind, it is possible to think that using different PGP microorganisms at 
the same time could help their host plants, as long as their coinoculation 
does not lead to reactions that are harmful to each other. Using single 
Omics methods such as genomes, metabolomics, or proteomics, 
such effects have only partially been studied to date [178-181]. The 
application of the biofertilizer combined with reduced synthetic N 
fertilization could maintain the yield, reduce the input of synthetic 
fertilizer, and improve economic efficiency [182,183]. Reducing the 
amount of chemical fertilizer used and adding JUNCAO nitrogen-
fixing biofertilizer (a 75% rate of chemical fertilizer and JUNCAO 
nitrogen-fixing biofertilizer) showed signs of improved crop vigor in P. 
giganteum. It also improved the nutritional quality of the herbage and 

the soil nutrient status of P. giganteum to a moderate degree, and it cut 
the cost of fertilizer [184]. In addition, farmers have high expectations 
for the subsidy policy of biofertilizer application in the future 
agricultural policy, and the subsidy policy is an effective incentive 
to promote the use by farmers [185]. Hence, we can modulate their 
combined use and drive it to increase crop yields, improve production 
processes, and meet rising global food demand using multi-omics 
approaches to understand in depth the processes that occur in plants 
when microorganisms are present.

6. CONCLUSION

Biofertilizers are a necessary component of environmentally friendly 
agricultural operations since it is important to reduce the impact on the 
environment. Despite the lack of data, it is obvious that biofertilizers 
have a significant role in agricultural productivity and also show great 
potential for the restoration of forests and the environment. An effective 
biofertilizer can have a good impact on plant development activities 
when it is correctly matched with the species of the host plant. Therefore, 
with a better understanding of the metagenomics of microorganisms, it 
will be possible to develop a proper environmentally-friendly fertilizer 
to be commercially used in agriculture. For the creation of efficient 
biofertilizers for sustainable agriculture and forestry, problems with 
host compatibility, storage conditions, formulation complexity, 
and other factors must be resolved. The development of efficient, 
innovative biofertilizer delivery systems that can be used to enhance 
in situ reforestation efforts using biofertilizers is a key area for future 
research. Therefore, biofertilizers are one of the key answers, we must 
take into account if we are to establish a sustainable farming system 
that will feed the entire world while making a profit and improving 
both human and environmental well-being.
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