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ABSTRACT

Yttrium oxide is one of the rare earth metals. It has an elevated fluorescence emission reliability, which could have 
applications in biological imaging and photodynamic therapy, particularly in the biomedical field, where it is used 
as a versatile, multi-dimensional agent with antibacterial, and antioxidant activity. The goal of this research is to 
synthesize yttrium oxide nanoparticles (Y2O3 nanoparticles) utilizing [Y(NO3)3 6H2O] as the precursor and the 
capping and reducing agent using Illicium verum (star anise) extract of flower and the investigation of biomedical 
applications which are the first report. Green synthesized nanoparticles were characterized with the assistance of a 
variety of techniques, such as dynamic light scattering, Fourier-transform infrared spectroscopy, X-ray diffraction, 
and field emission scanning electron microscopy. Y2O3 nanoparticles exhibited strong antibacterial action against 
Staphylococcus aureus and Escherichia coli, with an inhibitory zone measuring 13 mm and 15 mm, respectively. 
Furthermore, these nanoparticles were able to significantly control bacterial growth in a concentration- and time-
dependent manner. In vitro antioxidant activity of green-synthesized Y2O3 nanoparticles was determined using the 
DPPH technique, and a 50% scavenging efficiency was found at a concentration of 30 µg/mL.

1. INTRODUCTION

The distinct morphology of metal oxide nanoparticles is linked to their 
use in biomedical applications. Due to the differences in particle size 
between micromaterials and nanomaterials [1], nanoparticle synthesis 
is a significant obstacle on the road to creating biologically functional 
materials. As a possible method of transporting drugs, nanoparticles 
have garnered a lot of interest as cellular imaging labels and vectors 
for the delivery of genes and growth factors [2-4]. Using nanoparticles 
in photodynamic and photothermal therapy for tumors are another area 
of research. Using biosynthesis instead of toxic chemicals has allowed 
nanoparticle synthesis to advance rapidly in recent years [5].

Recent years have seen intensive study of yttrium oxide (Y2O3) due to 
its position as a vital rare earth metal. When it comes to optoelectronics 
and chemical catalysis, it is one of the most exciting new elements 
on the horizon. Y2O3 powder has a high dielectric constant and is 
very stable at high temperatures [6]. The great efficiency of Y2O3 
as an additive can be put to use in functional composite materials 
such as yttria-stabilized zirconia films. It is commonly used as a 
host material for various rare earth dopants, and it is got promising 
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applications in photodynamic therapy and biological imaging [7,8]. 
Chemical and physical methods of nanoparticle synthesis involve 
the use of certain toxic substances as reducing and capping agents. 
However, the biological method of nanoparticle synthesis employed 
many biological substance and living things [9]. When compared to 
chemical and physical methods, biosynthesis of nanoparticles resulted 
in the lower toxicity in highest concentration against non-cancerous 
cells; thus, biological synthesis has more advantages and is considered 
a sustainable option [10-12]. Nanoparticles can also be synthesized 
using biological processes such as those that utilize bacteria, enzymes, 
and plant extracts, as several authors [13,14] have discussed. The green 
synthesis of nanoparticles from plant extracts such as bark, leaves, 
seeds, pods, and tubers has gained popularity in recent years. The 
hope that this synthesis might benefit human health is a major factor 
fueling this fascination. Furthermore, recent studies have shown that 
plant extracts synthesize the greatest amount of nanoparticles when 
compared to plant powders, which was attributed to the plant powder 
containing more reducing agents [15]. It is common practice to use 
plant extracts rich in water-soluble organics and phenolics as reducing 
agents during the nanoparticle formation process [16,17]. For example, 
spices and other plant materials rich in phenolic compounds make 
excellent biomaterials for the creation of nanoparticles. Researchers 
have found that particular spices make for excellent nanoparticle 
synthesis platforms.

The synthesis of Yttrium oxide nanoparticles (Y2O3 nanoparticles) 
using the star anise (SA) (Illicium verum) is discussed in this paper. 
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Due to its high phenolic content, as reducing agents and capping 
agent found in SA is reason for better-quality of nanomaterial, and 
especially polyphenolic components have played a more significant 
role in inhibiting cancer cell growth in terms of chemical composition 
than other spices [18]. As a result, the reduction reaction is thought 
to be extremely fast, resulting in extremely high Y2O3 nanoparticles 
productivity and output. This study aims to understand the antibacterial 
potential against pathogenic bacteria, Y2O3 nanoparticles have been 
penetrate the cell wall of microbes and in activate the intracellular 
proteins and antioxidant potential used diphenyl-1-picrylhydrazile 
(DPPH) method of green synthesized Y2O3 nanoparticles using SA is 
significantly scavenging the free radicals in 1st time reported, which 
is characterized by field emission scanning electron microscopy 
(FE-SEM) for used to check the nanoparticles structures after they were 
synthesized, X-ray diffraction (XRD) for confirms that the synthesized 
Y2O3 nanoparticles are a crystalline material, hydrodynamic diameter 
was measured by dynamic light scattering (DLS), and the occurrence 
of Y-O-Y and O-Y-O stretching in the synthesized Y2O3 nanoparticles 
was further analyzed by Fourier-transform infrared spectroscopy 
(FTIR).

2. MATERIALS AND METHODS

2.1. Preparation of Plant Extract
I. verum (SA) was purchased from Ghandhi market, Tiruchirappalli 
district, Tamil Nadu. For this experiment, 20 g of dried SA were 
mixed with 200 mL of distilled water in a 250 mL Erlenmeyer flask 
and heated at 60°C for 30 min. Then, the standard filter paper and 
Whatman No. 1 filter paper were used to refine the crude extract. For 
research purposes, the filtrate was collected and frozen at 4°C.

2.2. Synthesis of Yttrium Oxide Nanoparticles
The Yttrium nitrate hexahydrate [Y(NO3)3•6H2O] (Sigma Aldrich, 
USA) has been prepared at a concentration of 0.1M. Then, 10 mL of 
SA extract was added with 50mL of Yttrium nitrate hexahydrate and 
stirred at 80°C for 2 h. Following this, the particles were centrifuged 
for 10 min at 10,000 rpm. Following that, it was washed with deionized 
water and centrifuged at 1500 rpm for 30 min. After being dried in a 
hot air oven at 70°C, the sample was mashed in a mortar and pestle. 
To make Y2O3 nanoparticles, this powdered material was calcined in a 
muffle furnace at 500°C [5].

2.3. Analytical Characterizations of Y2O3 Nanoparticles
In FT-IR analysis, SA-mediated Y2O3 nanoparticles were evaluated 
using the wavenumber range of 400–4000 cm-1 in a Nicolet 6700 
spectrophotometer at a rate of 4 cm-1 per point. The XRD patterns 
of nanoparticles were acquired at 45 kV, 40 mA, and a 2 angle 2θ, 
all of which are typical parameters for recording XRD data (Philips 
Electronic Instruments Inc., Mahwah, NJ). The hydrodynamic size 
of Y2O3 nanoparticles was measured using the DLS analysis method, 
Zetasizer Nano Instrument. The structural morphology of Y2O3 
nanoparticles was analyzed using FE-SEM. Drying nanoparticles were 
stored in molds on glass slides. The particles were sputter-coated with 
gold once they had dried, and JSM-7001F, JEOL, Ltd. of Japan, was 
used to observe the coating.

2.4. Antibacterial Activity Study
2.4.1. Minimum inhibitory concentration (MIC)
The MIC was determined by the microdilution method using the 
nutrient broth. The 1 mg/mL of Y2O3 nanoparticles in the stock 

solution was dissolved in DMSO, and the various concentrations of 
the nanoparticles (1, 2.5, 5, 10, 15, 20, 25, 50, 75, and 100 µg/mL 
from the stock solution were diluted with nutrient broth. 50 µL of each 
diluted nanoparticle was transferred into wells containing 100 µL of 
nutrient broth. The total volume was 200 µL, with each well receiving 
50 µL of 24-h-old bacterial inoculum. Additions without bacteria are 
considered a negative control, and the positive control did not add 
Y2O3 nanoparticles to the well. The microliter plate was then incubated 
at 37°C for 24 h. An optical density of turbidity was measured using 
the Synergy HT Multimode Reader (Biotek, Winooski, USA) at 
550 nm. The same experiment was conducted using streptomycin as 
the standard. All the experiments were performed in triplicates [19,20].

2.4.2. Well diffusion method
Antibacterial activity by the well-diffusion method of Y2O3 
nanoparticles was examined against Escherichia coli and 
Staphylococcus aureus. The plate was pored with Muller–Hinton 
agar, bacterial suspension was coated uniformly, and then plates were 
punctured using gel puncture to form wells with a 6 mm diameter. On 
each well, different concentration of Y2O3 nanoparticles (25 µg/mL–
100 µg/mL) and Streptomycin (HiMedia, India) as positive control (10 
µg/mL) and negative control has been used 50 µL autoclaved double 
distilled water. After that incubating the cultures at 37°C for 24 h, the 
zone of inhibition (ZOI) was determined by measuring the diameter of 
the wells (mm) [19].

2.4.3. Turbidimetric method
Validation of the Y2O3 nanoparticles’ antibacterial efficiency was 
demonstrated by the turbidimetric technique. Antibacterial activity 
of Y2O3 nanoparticles against E. coli and S. aureus cultured in Luria 
Bertani broth. Bacterial cultures that had already been growing for 
24 h were inoculated into LB broth that had been spiked with (25 µg/
mL to 100 µg/mL of Y2O3 nanoparticles. As a comparison, LB broth 
without Y2O3 nanoparticles was used. After incubating a broth mixture 
in conical flasks at room temperature with a continuous shaker for 24 h, 
the optical density was determined at 600 nm to assess the sensitivity 
of the organisms used in the experiment [5].

2.5. Radical Scavenging Activity by the DPPH
The free radical scavenging activity of Y2O3 nanoparticles was 
evaluated using the 2, 2-diphenyl-1-picrylhydrazile (DPPH) technique. 
100µL of Y2O3 nanoparticles were prepared at a range of concentrations 
(10 µg/mL to 50 µg/mL) with ascorbic acid (AA) (Vitamin C) as a 
positive control. In a 96-well plate, 1 mM DPPH solution was added 
to each well, and the samples were incubated at room temperature in 
the dark for 30 min. As measured by a Synergy HT Multimode Reader 
at 517 nm, the solution’s color change from violet to yellow indicated 
that reactive oxygen species had been scavenged (Biotek, Winooski, 
USA). The scavenging potential was determined using the following 
equation:

% Inhibition Ac As
Ac

�
�

�100

Whereas, Ac – OD value of blank, As – OD value of Y2O3 nanoparticles 
treated.

3. RESULTS AND DISCUSSION

The Y2O3 nanoparticles were prepared in their pure form using the 
yttrium nitrate hexahydrate treatment with SA extract solution. The 
constant stirring carried the precipitate to the settle. The precipitate was 
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then washed with water and dried in an oven. The powder was finely 
powdered after drying. FE-SEM, DLS, FTIR, and XRD analyses were 
used to characterize the grounded sample.

3.1. FE-SEM Analysis
The FE-SEM, as shown in [Figure 1], produced pure Y2O3 
nanoparticles using SA extract. The Y2O3 nanoparticles are spherical 
in shape and have the additive nature of secondary particles, each 
of which is composed of a cluster of primary particles and partially 
agglomerated. The obtained particles had a uniform shape and size, 
which was confirmed by the FE-SEM. The Y2O3 nanoparticles 
exhibit gatherings due to the dipole interaction of every particle. FE-
SEM images of yttrium oxide nanoparticles show the formation of a 
spherical structure, which is found to have a mean approximate size 
of 150 ± 5 nm.

The hydrodynamic diameter of each particle is determined at a specific 
position if the nanoparticles are sintered. Similar results were observed 
in early studies; the nanoparticles were partially aggregated, but the 
vast majority of them were tightly controlled. Similarly to the previous 
report [21], the morphological characteristics of the formation of Y2O3 
nanoparticles with spherical shape and 100 nm diameter were analyzed 
using SEM. The obtained morphological characterization of yttrium 
oxide nanoparticles was observed to be around 90 nm in particle size 
with a spherical shape, as likewise reported in early studies [22].

3.2. DLS and Zeta Potential Analysis
The DLS analysis revealed the average size of Y2O3 nanoparticles, 
which was found to be in the range of 110.4 ± 32 nm. According 
to the DLS measurements, which show a PDI value of 0.310, the 
size distribution of the nanoparticles is rather uniform, as shown in 
[Figure 2]. The production of agglomerated particles in the aqueous 
medium may be the cause of the increased particle size that was found 
by DLS, this phenomenon was documented in earlier studies [22]. 
DLS was primarily used to assess the hydrodynamic size of the Y2O3 
nanoparticles that dissolved in cultured media. These nanoparticles 
were discovered to be approximately spherical, and throughout the 
experiment, they showed excellent monodispersity of the synthesized 
nanoparticles [21].

The surface charge of green synthesized Y2O3 nanoparticles was 
analyzed using Zeta potential (ζ), which has a negative charge of 
−19.2 mV, as shown in [Figure 3], with the capped phenolic compound 
being responsible for the negative surface charge [23].

3.3. FTIR Analysis
Peaks were observed in the FTIR spectrum analyses of Y2O3 
nanoparticles at 3435, 2025,1634,1383,1102, and 676 cm-1, as shown 
in [Figure 4]. The broad spectrum of 3435 cm-1 indicates at O-H bend, 
particles in a solution [24]. The spectrum 2025 cm-1 responsible for the 
strong N=C=S stretching with isothiocyanate functional group. The 
1102 cm-1 spectrum is responsible for the strong ether bond with C-O 
stretching.The sharp peak observed at 1634 cm-1 suggested that OH 
stretching was taking place in the residual moisture [25]. 1383 cm-

1, which is responsible for the O-H bend, denotes phenol or tertiary 
alcohol. Y-O stretching in Y2O3 nanoparticles is responsible for the 
formation of the bands in the spectrum at around 676 cm-1. The peaks 
in the FTIR spectrum of synthesized Y2O3 nanoparticles that range 
between 500 cm-1 and 800 cm-1 in the previous study can be attributed 
to the stretching of Y-O molecules that resulted the synthesis of Y2O3 
nanoparticles from the Y2O3 [11,26].

Figure 2: DLS analysis of yttrium oxide nanoparticles.

Figure 1: FE-SEM image of Y2O3 nanoparticles.

Figure 3: Zeta potential analysis of yttrium oxide nanoparticles.

3.4. XRD Examination
The XRD patterns of the Y2O3 nanoparticles, as shown in [Figure 5], 
depict the crystallized nature of the nanoparticles. This was due to the 
crystal growth under the lower bath temperature and the accompanied 
intercalation of nitrate ions from yttrium nitrate. The sample was observed 
to turn out to be amorphous, and the amorphous nature of the pure sample 
is shown by a broad hump and the appearance of diffraction peaks. Perhaps 
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this would indicate that the generated Y2O3 nanoparticles have the same 
body-centered cubic shape as the standard Y2O3 nanoparticles (JCPDF 
Number 41-1105). The planes of XRD spectra revealed that the prepared 
Y2O3 nanoparticles were pure due to the sharp 2θ peaks at 28.1, 33.0°, 
43.0°, 49.9°, and 58.8° responsible for the corresponding planes such as 
222, 400, 422, 440, and 622. Due to the lingering effects of these other 
impurities, the XRD data only revealed weak peaks as minor peaks [21].

According to the previous study, 2θ° were observed in 222, 400, 322, 
422, 440, and 622 corresponding to the planes with the highest diffraction 
intensity of biosynthesized Y2O3 nanoparticles using Acalypha indica leaf 
extract [5], The green synthesized yttrium oxide nanoparticles diffraction 
peaks appeared at 20.36, 28.91, 33.59, 35.59, 39.54, 43.31, 48.38, 53.11, 
57.49, 59.15, 78.32, and 80.95° correspond to the 211, 222, 400, 411, 332, 
134, 440, 611, 622, 136, 662, and 048 planes showed crystallographic 
structure reported in early study [10]. Another report suggested that 
2θ° represent that crystallinity of the Y2O3 nanopowder shown in XRD 
diffraction peak ranges at 20.54°, 29.18°, 33.71°, 39.84°, 43.49°, 48.62°, 
and 57.69° which correspond to the planes of 211, 222, 400, 411, 332, 440, 
and 622 indicate pure Y2O3 cubic phase [27]. Hence, the present study has 
been compared with the previous studies that 2θ° peaks were similar in 
XRD diffraction; the highest diffraction intensity peaks are responsible for 
the presence of Y2O3 nanoparticles in crystallite form.

3.5. Antibacterial Activity
The antibacterial activity of Y2O3 nanoparticles has been preliminary 
investigated using the microdilution method, according to the MIC’s 
OD value, it was evaluated against E. coli and S. aureus at 10 µg/mL 
and 15 µg/mL, respectively. The obtained value of MIC was found at 
the lowest concentration of the nanoparticles, which could not allow 
any visible pathogenic bacterial growth in the incubation period of 24 h 
and also after incubation based on OD measurements corresponding to 
the nanoparticle concentration [19,20].

Research on the efficacy of Y2O3 nanoparticles as an antibacterial agent 
was conducted using both Gram-positive (S. aureus) and Gram-negative 
(E. coli) harmful bacteria which are generally found in the manmade 
environment such as soil and water and may cause disease in humans 
and animals. Since it is the best understood bacterium, E. coli serves as 
a model organism in many antimicrobial susceptibility studies. Diseases 

caused by S. aureus range from mild skin infections to potentially fatal 
endocarditis and toxic shock syndrome. According to [Figure 6], Y2O3 
nanoparticles exhibit a high ZOI high for 100 µg/mL of concentration. 
This evidence suggests that Y2O3 nanoparticles generate toxicity for 
bacteria and cause cell death through interacting with the bacteria’s cell 
membrane. Among the four concentrations, 100 µg/mL had the highest 
ZOI against E. coli (15 mm) and S. aureus (13 mm). SA-mediated 
synthesis Y2O3 nanoparticles’ antibacterial activity may be impacted by 
their binding to chondrioids and subsequent disruption of the chondrioids’ 
cell division, DNA replication, and respiration processes, all of which 
contribute directly to cell death. It has been hypothesized that polypenols 
found in SA kill bacteria directly, activate antibiotics synergistically, and 
have three distinct ways to reduce bacterial pathogenicity [28]. Moreover, 
flavonoids have been found to be able to destabilize cytoplasmic 
membranes, inhibit lactamases and topoisomerase, and hence stop the 
growth of antibiotic resistance in bacteria [29,30].

Since Y2O3 nanoparticles bind to the cell membrane by strong 
electrostatic forces, they are able to effectively suppress the growth of 
both Gram-positive and Gram-negative bacteria at a concentration of 
100 µg/mL. According to the previous reports on the mechanism of 
antibacterial action of Y2O3 nanoparticles, yttrium ions may penetrate 
the cell wall of bacteria and inhibit the growth through down-regulation 
of enzyme activity, which leads to bacterial cell death [5,31,32]. 

Figure 4: FTIR analysis of yttrium oxide nanoparticles.
Figure 5: XRD of yttrium oxide nanoparticles.

Figure 6: Antibacterial activity of Y2O3 nanoparticles against Escherichia coli 
and Staphylococcus aureus.
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Figure 7: Growth curve of Escherichia coli and Staphylococcus aureus under Y2O3 nanoparticles treatment.

In contrast to antibiotics, Y2O3 nanoparticles that were synthesized 
from the leaf extract of Lantana camara (LC) exhibited an excellent 
inhibitory zone. This was observed in comparison to antibiotics and LC 
Y2O3 nanoparticles. The inhibitory zone that was formed by LC Y2O3 
nanoparticles was only marginally larger than the one that was produced 
by the group that acted as the control. Therefore, LC Y2O3 nanoparticles 
are a promising antibacterial for Gram-positive and Gram-negative 
pathogens such as Bacillus subtilis and E. coli, as described in a recent 
report; in addition, Y2O3 nanoparticles were shown to be active against 
E. coli, S. marcens, P. aerogenosa, and S. aureus [33].

3.6. Effect of Y2O3 Nanoparticles on Bacterial Growth (E. coli 
and S. aureus)
Research demonstrating the potential of Y2O3 nanoparticles on bacterial 
growth was conducted. [Figure 7] shows the lag, log, stationary, 
and death phases of the growth curves for E. coli and S. aureus. 
The log phase decreased gradually from 25 µg/mL to 100 µg/mL, 
demonstrating that Y2O3 nanoparticles had a microbiostatic effect on 
E. coli and S. aureus that was dose-dependent. Y2O3 nanoparticles 
interact with the treated pathogens, causing cell membrane disruption 
and a decrease in biomass in a time-dependent way. The use of Y2O3 
nanoparticles has been shown to drastically reduce bacterial growth. 
UV-visible spectrophotometer readings were used to compare the 
inhibitory effects of Y2O3 nanoparticles at various concentrations, 
25 µg/mL to 100 µg/mL. Biomass growth was compared before 
and after the incorporation of Y2O3 nanoparticles. Increasing the 
concentration of Y2O3 nanoparticles inhibits the growth of E. coli and 
S. aureus, with the greatest growth inhibition occurring at 100 µg/mL. 
Similar results were observed in previously reported A. indica leaf 
extract-mediated Y2O3 nanoparticle synthesis [5].

3.7. DPPH Radical Scavenging Activity
The antioxidant activity of Y2O3 nanoparticles was measured using 
2, 2-diphenyl-1-picrylhydrazile (DPPH) and AA as the standard. 
A freshly produced DPPH solution exhibited a purple color. The 
purple color changes to yellow when an antioxidant is present in 
the medium. Thus, antioxidant molecules can eliminate DPPH free 
radicals and transform them into a colorless or yellow compound, 
observed at 517 nm absorbance. SA-mediated Y2O3 nanoparticles 
showed improved antioxidant properties. An increased concentration 
of Y2O3 nanoparticles might be changed from purple to yellow as 
observed, as shown in Figure 8a. The IC50 concentration of scavenging 

activity, shown in Figure 8b, is 30 µg/mL. This study suggests that this 
may influence the antioxidant property of Y2O3 nanoparticles. Similar 
results were observed and reported as radical scavenging activity 
for Y2O3 nanoparticles exposed to significant antioxidant activity 
as demonstrated by the dose-dependent increase in DPPH radical 
scavenging activity [22].

The DPPH radical was suppressed at a rate of 22.4% after 5 min, 
and after an hour, it had reached its highest level, which was 48.1%. 
According to the findings, Y10 has the capability to reduce DPPH 
levels, and its antioxidant activity grows with time, reaching its 
maximum level an hour after treatment has been delivered. In addition, 
the antioxidant activity of yttrium oxide nanocrystallites increases as 
time dependent. The improvement of antioxidant activity is strongly 
dependent on the particle size, as was established in the past with 
several other kinds of materials, such as iron oxide nanoparticles [34].

Figure 8: Antioxidant activity of Y2O3 nanoparticles by DPPH method  
(a) observation of color changes after incubation period and (b) percentage of 

free radical scavenging activity.

b

a
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This behavior has previously been observed in materials that are 
relatively comparable in terms of the composition of their make-up. 
It is quite likely that this effect is a consequence of the increased 
surface area that may be accomplished by carrying out the suggested 
synthesis with the use of P-123 from previous research [35]. It has 
been demonstrated that poly EGMP, also known as ethylene glycol 
methacrylate phosphate-functionalized core-shell Y2O3 nanoparticles, 
has direct antioxidant effects in vivo, where they are able to block 
or eliminate the ROS that is necessary to destroy the cells. As a 
consequence of this, Y2O3 has been demonstrated to be neuroprotective 
as well as an efficient antioxidant, in particular in the presence of 
programmed cell death and oxidative stress. Therefore, it is acceptable 
to draw the conclusion that Y2O3 nanoparticles can assist neuronal cell 
survival in the face of oxidative stress, which may have implications 
for therapeutic use as reported [36,37].

4. CONCLUSION

In the progression of this research, Y2O3 nanoparticles were created 
by synthesizing an extract of SA blossoms, which have a high level 
of surface reactivity as well as biocompatibility. A number of different 
spices have been identified by researchers as having excellent qualities 
for the synthesis of nanoparticles. A substance that is high in phenolic 
compounds is necessary for the formation of nanoparticles, and SA is 
the only spice that delivers sufficient quantities of these components. 
The characterization of the spherical form of Y2O3 nanoparticles was 
accomplished through the use of FE-SEM. To identify the properties 
of the nanoparticle, different types of techniques were utilized. There 
is not a publication that has been found that describes the free radical 
scavenging and antibacterial activity of Y2O3 nanoparticles that have 
been synthesized using a flower extract of SA. It has been demonstrated 
that some chemical components of SA, such as the phenolic compounds 
that it contains, can prevent the growth of bacteria, including S. aureus 
and E. coli. The findings indicate that green-synthesized Y2O3 
nanoparticles can be employed well in biological applications.
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