Effect of salicylic acid, jasmonic acid, and a combination of both on andrographolide production in cell suspension cultures of Andrographis paniculata (Burm.f.) Nees

Nihal Ahmed N. Praveen   

Open Access   

Published:  Nov 11, 2022

DOI: 10.7324/JABB.2023.110220
Abstract

Elicitors act as signaling compounds that can induce and enhance the production of metabolites by activating biochemical pathways in response to external stress. Salicylic acid (SA) acts as a signaling molecule in plants in response to an attack by biotrophic pathogens whereas jasmonic acid (JA) is released in plants in response to wounds and herbivory. Both signaling molecules aid in plant chemical defenses by increasing the production of secondary metabolites. The present study investigates the effect of SA, JA, and the combination of both (SA + JA) on the andrographolide content in cell suspension cultures of Andrographis paniculata. Four different concentrations (25, 50, 75, and 100 μM) of SA and JA individually, and an equimolar combination of both SA and JA together, were administered to cell suspension cultures taken in triplicates at shake flask scale. Andrographolide content was estimated using high-performance liquid chromatography. Both SA and JA showed a positive effect on andrographolide content with the increase in their concentrations. SA at its highest concentration resulted in just a 0.18-fold increase (83.33 ± 6.7 μg/g DCW) in andrographolide content compared to control, whereas JA resulted in a 3-fold increase (211 ±5.8 μg/g DW); the combination of both SA and JA had an intermediate effect at all concentrations except one concentration (75 + 75 μM) which resulted in a 3.8-fold increase (280 ± 2.7 μg/g DW), in andrographolide content.


Keyword:     Andrographis paniculata Andrographolide Abiotic elicitors Salicylic acid Jasmonic acid Cell suspension cultures


Citation:

Ahmed N, Praveen N. Effect of salicylic acid, jasmonic acid, and a combination of both on andrographolide production in cell suspension cultures of Andrographis paniculata (Burm.f.) Nees. J App Biol Biotech. 2022. https://doi.org/10.7324/JABB.2023.110220

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Kumoro AC, Hasan M, Singh H. Extraction of andrographolide from Andrographis paniculata dried leaves using supercritical CO2 and ethanol mixture. Ind Eng Chem Res 2019;58:742-51. https://doi.org/10.1021/acs.iecr.8b02243

2. Cui Y, Wang Y, Ouyang X. Fingerprint profile of active components for Andrographis paniculata Nees by HPLC-DAD. Sens Instrum Food Qual Saf 2009;3:165-79. https://doi.org/10.1007/s11694-009-9082-4

3. Xu C, Chou GX, Wang ZT. A new diterpene from the leaves of Andrographis paniculata Nees. Fitoterapia 2010;81:610-3. https://doi.org/10.1016/j.fitote.2010.03.003

4. Subramanian R, Asmawi MZ, Sadikun A. A bitter plant with a sweet future? A comprehensive review of an oriental medicinal plant: Andrographis paniculata. Phytochem Rev 2012;11:39-75. https://doi.org/10.1007/s11101-011-9219-z

5. Hossain MS, Urbi Z, Sule A, Rahman KM. Andrographis paniculata (Burm f) Wall ex Nees: A review of ethnobotany phytochemistry and pharmacology. Sci World J 2014;2014:274905. https://doi.org/10.1155/2014/274905

6. Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr 2019;59:S17-29. https://doi.org/10.1080/10408398.2018.1501657

7. Mehta S, Sharma AK, Singh RK. Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculata: An update. Phytomed Plus 2021;1:100085. https://doi.org/10.1016/j.phyplu.2021.100085

8. Wang T, Liu B, Zhang W. Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron-glia cultures by inhibiting microglial activation. J Pharmacol Exp Ther 2004;308:975-83. https://doi.org/10.1124/jpet.103.059683

9. Yang S, Evens AM, Prachand S. Singh AT, Bhalla S, David K, et al. Mitochondrial-mediated apoptosis in lymphoma cells by the diterpenoid lactone andrographolide the active component of Andrographis paniculata. Clin Cancer Res 2010;16:4755-68. https://doi.org/10.1158/1078-0432.CCR-10-0883

10. Zhou J, Lu GD, Ong CS, Ong CN, Shen HM. Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation. Mol Cancer Ther 2008;7:2170-80. https://doi.org/10.1158/1535-7163.MCT-08-0071

11. Liu G, Chu H. Andrographolide inhibits proliferation and induces cell cycle arrest and apoptosis in human melanoma cells. Oncol Lett 2018;15:5301-5. https://doi.org/10.3892/ol.2018.7941

12. Ji L, Liu T, Liu J, Chen Y, Wang Z. Andrographolide inhibits human hepatoma-derived Hep3B cell growth through the activation of c-Jun N-terminal kinase. Planta Med 2007;73:1397-1401. https://doi.org/10.1055/s-2007-990230

13. Manikam SD, Stanslas J. Andrographolide inhibits growth of acute promyelocytic leukaemia cells by inducing retinoic acid receptor-independent cell differentiation and apoptosis. J Pharm Pharmacol 2009;61:69-78. https://doi.org/10.1211/jpp.61.01.0010

14. Lin TP, Chen SY, Duh PD, Chang LK, Liu YN. Inhibition of the epstein-barr virus lytic cycle by andrographolide. Biol Pharmacol Bull 2008;31:2018-23. https://doi.org/10.1248/bpb.31.2018

15. Kuzmaa L, Bruchajzer E, Wysokinska H. Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme Microb Technol 2009;44:406-10. https://doi.org/10.1016/j.enzmictec.2009.01.005

16. Frankfater CR, Dowd MK, Triplett BA. Effect of elicitors on the production of gossypol and methylated gossypol in cotton hairy roots. Plant Cell Tissue Organ Cult 2009;98:341-9. https://doi.org/10.1007/s11240-009-9568-0

17. Murthy HN, Lee EJ, Paek KY. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 2014;118:1-16. https://doi.org/10.1007/s11240-014-0467-7

18. Pirbalouti AG, Sajjadi SE, Parang K. A review (research and patents) on jasmonic acid and its derivatives. Arch Pharm 2014;347:229-39. https://doi.org/10.1002/ardp.201300287

19. Fu ZQ, Dong X. Systemic acquired resistance: Turning local infection into global defence. Ann Rev Plant Biol 2013;64:839-63. https://doi.org/10.1146/annurev-arplant-042811-105606

20. Boatwright JL, Pajerowska-Mukhtar K. Salicylic acid: An old hormone up to new tricks. Mol Plant Pathol 2013;14:623-34. https://doi.org/10.1111/mpp.12035

21. Gandi S, Rao K, Chodisetti B, Giri A. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata. Appl Biochem Biotechnol 2012;168:1729-38. https://doi.org/10.1007/s12010-012-9892-4

22. Vakil MM, Mendhulkar VD. Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm f) Nees. Bot Stud 2013;54:1-8. https://doi.org/10.1186/1999-3110-54-49

23. Huot B, Yao J, Montgomery BL, He SY. Growth-defence tradeoffs in plants: A balancing act to optimize fitness. Mol Plant 2014;7:1267-87. https://doi.org/10.1093/mp/ssu049

24. De Geyter N, Gholami A, Goormachtig S, Goossens A. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 2012;17:349-59. https://doi.org/10.1016/j.tplants.2012.03.001

25. Vakil MM, Mendhulkar VD. Salicylic acid and chitosan mediated abiotic stress in cell suspension culture of Andrographis paniculata (Burm.f.) Nees. for andrographolide synthesis. Int J Pharm Sci Res 2013;21:3453-9.

26. Zaheer M, Giri CC. Enhanced diterpene lactone (andrographolide) production from elicited adventitious root cultures of Andrographis paniculata. Res Chem Intermed 2017;43:2433-4. https://doi.org/10.1007/s11164-016-2771-9

27. Brooks DM, Bender CL, Kunkel BN. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 2005;6:629-39. https://doi.org/10.1111/j.1364-3703.2005.00311.x

28. Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, et al. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid

accumulation. Cell Host Microbe. 2012;11:587-96. https://doi.org/10.1016/j.chom.2012.04.014

29. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol 2012;28:489-521. https://doi.org/10.1146/annurev-cellbio-092910-154055

30. Pena-Cortes H, Albrecht T, Prat S, Weilar EW, Willmitzer L. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 1993;191:123-8. https://doi.org/10.1007/BF00240903

31. Sano H, Seo S, Orudgev E, Youssefian S, Ishizuka K. Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels abnormally induces salicylic acid in response to wounding and increases resistance to tobacco mosaic virus infection. Proc Natl Acad Sci U S A 1994;91:10556-60. https://doi.org/10.1073/pnas.91.22.10556

32. Cipollini D, Enright S, Traw MB, Bergelson J. Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua. Mol Ecol 2004;13:1643-53. https://doi.org/10.1111/j.1365-294X.2004.02161.x

33. Traw MB, Kim J, Enright S, Cipollini DF, Bergelson J. Negative crosstalk between the salicylate and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Mol Ecol 2003;12:1125-35. https://doi.org/10.1046/j.1365-294X.2003.01815.x

34. Koornneef A, Leon-Reyes A, Ritsema T, Verhage A, Den Otter FC, Van Loon LC, et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol 2008;147:1358-68. https://doi.org/10.1104/pp.108.121392

35. Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy antagonism and oxidative stress leading to cell death. Plant Physiol 2006;140:249-62. https://doi.org/10.1104/pp.105.072348

36. Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting gcc promoter motifs via transcription factor ORA59. Plant Cell 2013;25:744-61. https://doi.org/10.1105/tpc.112.108548

37. Zaheer M, Giri CC. Multiple shoot induction and jasmonic versus salicylic acid driven elicitation for enhanced andrographolide production in Andrographis paniculata. Plant Cell Tissue Organ Cult 2015;122:553-63. https://doi.org/10.1007/s11240-015-0787-2

38. Al-Khayri M, Naik PM. Elicitor-induced production of biomass and pharmaceutical phenolic compounds in cell suspension culture of date palm (Phoenix dactylifera L.). Molecules 2020;25:4669. https://doi.org/10.3390/molecules25204669

39. Patil RA, Lenka SK, Normanly J, Walker EL, Roberts SC. Methyl jasmonate represses growth and affects cell cycle progression in cultured Taxus cells. Plant Cell Rep 2014;33:1479-92. https://doi.org/10.1007/s00299-014-1632-5

40. Mendoza D, Cuaspud O, Arias JP, Ruiz O, Arias M. Effect of salicylic acid and methyl jasmonate in the production of phenolic compounds in plant cell suspension cultures of Thevetia peruviana. Biotechnol Rep 2018;19:e00273. https://doi.org/10.1016/j.btre.2018.e00273

41. Izabela G, Halina W. The effect of methyl jasmonate on production of antioxidant compounds in shoot cultures of Salvia officinalis L. Herb Pol 2009;55:238-43.

42. Sharmila R, Subburathinam KM. Effect of signal compounds on andrographolide in the hairy root cultures of Andrographis paniculata. Int J Pharm Sci Res 2013;4:773.

43. Sharma SN, Jha Z, Sinha RK, Geda AK. Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata. Physiol Plant 2015;153:221-9. https://doi.org/10.1111/ppl.12252

44. Spoel SH, Johnson JS, Dong X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 2007;104:18842-7. https://doi.org/10.1073/pnas.0708139104

Article Metrics

1 Absract views 3 PDF Downloads 4 Total views

Related Search

By author names

Citiaion Alert By Google Scholar