Effect of heavy metals on germination, biochemical, and L-DOPA content in Mucuna pruriens (L.) DC.

Akshatha Banadka Praveen Nagella   

Open Access   

Published:  Jun 09, 2022

Abstract

Mucuna pruriens (L.) DC. is a medicinal plant with a wide range of pharmacological properties that have been used in various medicinal preparations for centuries. M. pruriens is a rich source of levodopa (L-DOPA), mainly used to treat Parkinson’s disease. The present study investigates the impact of heavy metals such as cadmium (Cd), mercury (Hg), and lead (Pb) on the growth parameters and biochemical characteristics, including the L-DOPA content of M. pruriens. The seeds of M. pruriens were treated with different concentrations of Cd (0–250 ppm), Hg (0–250 ppm), and Pb (0–2000 ppm) for 21 days. On exposure to heavy metals, the germination %, the vegetative growth, and the biochemical characteristics such as the protein, carbohydrate, chlorophyll, total phenol, flavonoid, and proline content varied significantly in the heavy metal-treated plants when compared to control. It was also observed that the L-DOPA content increased with increased metal concentration and then decreased further with higher concentration of metals. The metal accumulation increased with the increase in the metal concentration. The seeds treated with 1000 ppm of Pb showed the highest L-DOPA content compared with control and other treatments.


Keyword:     Bioaccumulation Defense Heavy metal stress Levodopa Mucuna pruriens (L.) DC.


Citation:

Banadka A, Nagella P. Effect of heavy metals on germination, biochemical, and L-DOPA content in Mucuna pruriens (L.) DC. J App Biol Biotech. 2022. Online First.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G. The magic velvet bean of Mucuna pruriens. J Tradit Complement Med 2012;2:331-9. https://doi.org/10.1016/S2225-4110(16)30119-5

2. Rai SN, Birla H, Singh SS, Zahra W, Patil RR, Jadhav JP, et al. Mucuna pruriens protects against MPTP intoxicated neuroinflammation in Parkinson's disease through NF-κB/pAKT signaling pathways. Front Aging Neurosci 2017;9:421. https://doi.org/10.3389/fnagi.2017.00421

3. Katzenschlager R. Mucuna pruriens in Parkinson's disease: A double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 2004;75:1672-7. https://doi.org/10.1136/jnnp.2003.028761

4. Kalaivanan D, Ganeshamurthy AN. Mechanisms of heavy metal toxicity in plants. In: Rao N, Shivashankara K, Laxman R, editors. Abiotic Stress Physiology of Horticultural Crops. New Delhi: Springer; 2016. https://doi.org/10.1007/978-81-322-2725-0_5

5. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020;6:e04691. https://doi.org/10.1016/j.heliyon.2020.e04691

6. Das K, Dang R, Shivananda TN, Sur P. Interaction between phosphorus and zinc on the Biomass yield and yield attributes of the medicinal plant stevia (Stevia rebaudiana). Sci World J 2005;5:390-5. https://doi.org/10.1100/tsw.2005.49

7. Bhattacharya S. Medicinal plants and natural products can play a significant role in mitigation of mercury toxicity. InterdiscipToxicol 2018;11:247-54. https://doi.org/10.2478/intox-2018-0024

8. Nas FS, Ali M. The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Ecol Environ Sci 2018;3:265-8. https://doi.org/10.15406/mojes.2018.03.00098

9. Nasim SA, Dhir B. Heavy metals alter the potency of medicinal plants. Rev Environ Contam Toxicol 2010;203:139-49. https://doi.org/10.1007/978-1-4419-1352-4_5

10. Lajayer BA, Ghorbanpour M, Nikabadi S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol Environ Saf 2017;145:377-90. https://doi.org/10.1016/j.ecoenv.2017.07.035

11. Troll W, Lindsley J. A photometric method for the determination of proline. J Biol Chem 1955;215:655-60. https://doi.org/10.1016/S0021-9258(18)65988-5

12. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 1949;24:1-15. https://doi.org/10.1104/pp.24.1.1

13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J BiolChem 1951;193:265-75. https://doi.org/10.1016/S0021-9258(19)52451-6

14. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350-6. https://doi.org/10.1021/ac60111a017

15. Sembiring EN, Elya B, Sauriasari R. Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) roxb. Pharmacogn J 2017;10:123-7. https://doi.org/10.5530/pj.2018.1.22

16. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199-200. https://doi.org/10.1038/1811199a0

17. Chew YL, Goh JK, Lim YY. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem 2009;116:13-8. https://doi.org/10.1016/j.foodchem.2009.01.091

18. Chung IM, Ali M, Praveen N, Yu BR, Kim SH, Ahmad A. New polyglucopyranosyl and polyarabinopyranosyl of fatty acid derivatives from the fruits of Lycium chinense and its antioxidant activity. Food Chem 2014;151:435-43. https://doi.org/10.1016/j.foodchem.2013.11.061

19. Turek A, Wieczorek K, Wolf WM. Digestion procedure and determination of heavy metals in sewage sludge--an analytical problem. Sustain Sci Pract Policy 2019;11:1753. https://doi.org/10.3390/su11061753

20. Rakesh B, HimaBindu K, Praveen N. Variations in the L-DOPA content, phytochemical constituents and antioxidant activity of different germlines of Mucuna pruriens (L.) DC. Asian J Chem 2021;33:1881-90. https://doi.org/10.14233/ajchem.2021.23293

21. Amin H, Arain BA, Jahangir TM, Abbasi MS, Amin F. Accumulation and distribution of lead (Pb) in plant tissues of guar (Cyamopsis tetragonoloba L.) and sesame (Sesamum indicum L.): Profitable phytoremediation with biofuel crops. Geol Ecol Landsc 2018;2:51-60. https://doi.org/10.1080/24749508.2018.1452464

22. Swapna B. Impact of cadmium on germination and early seedling growth of Cajanus cajan L. Int J Curr 2016;8:27.

23. Madhan M, Mahesh K, Rao SS. Effect of 24-epibrassinolide on aluminium stress induced inhibition of seed germination and seedling growth of Cajanus cajan (L.) Millsp. Int J Multidiscip Curr Res 2014;2:286-90.

24. Sethy SK, Ghosh S. Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 2013;4:272-5. https://doi.org/10.4103/0976-9668.116964

25. Gang A, Vyas A, Vyas H. Toxic effect of heavy metals on germination and seedling growth of wheat. J Environ Res Dev 2013;8:206-13.

26. Acharya S, Sharma DK. Study on the effects of heavy metals on seed germination and plant growth on Jatropha curcas. Int J Agric Sci Res 2014;3:31-4.

27. Chandana C. Heavy metal accumulation and the biochemical responses in selected medicinal plants [Dissertation]. Kerala: Mahatma Gandhi University; 2018.

28. Varshney DS. Effect of some Heavy metals on the growth and development of some medicinally important plants [Dissertation]. Uttar Pradesh: Aligarh Muslim University; 2014.

29. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: A review. Plant Signal Behav 2012;7:1456-66. https://doi.org/10.4161/psb.21949

30. Dey SK, Dey J, Patra S, Pothal D. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 2007;19:53-60. https://doi.org/10.1590/S1677-04202007000100006

31. Lin YC, Kao CH. Proline accumulation induced by excess nickel in detached rice leaves. Biol Plant 2007;51:351-4. https://doi.org/10.1007/s10535-007-0071-3

32. Li Y, He N, Hou J, Xu L, Liu C, Zhang J, et al. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol. 2018;6:1-10. https://doi.org/10.3389/fevo.2018.00064

33. Parekh D, Puranik RM, Srivastava HS. Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments. Biochem Physiol Pflanz 1990;186:239-42. https://doi.org/10.1016/S0015-3796(11)80078-8

34. Pant PP, Tripathi AK, Dwivedi V. Effect of heavy metals on some biochemical parameters of Sal (Shorea robusta) seedling at nursery level, Doon Valley, India. J Agric Sci 2011;2:45-51. https://doi.org/10.1080/09766898.2011.11884667

35. Rasheed F, Markgren J, Hedenqvist M, Johansson E. Modeling to understand plant protein structure-function relationships-implications for seed storage proteins. Molecules 2020;25:873. https://doi.org/10.3390/molecules25040873

36. Nair SR, Rajani V. Effects of heavy metals on seed germination and protein content of Vigna radiate (L.) Wilczek. Int J Adv Res 2015;3:1306-17.

37. Tripathi AK, Tripathi S. Changes in some physiological and biochemical characters in Albizia lebbek as bio-indicators of heavy metal toxicity. J Environ Biol 1999;20:93-8.

38. Kumar H, Dubey RC, Maheshwari DK. Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonellafoenum graecum L.). Crop Prot 2011;30:1396-403. https://doi.org/10.1016/j.cropro.2011.05.001

39. Duan Y, Sangani CB, Muddassir M, Soni KV. Copper, chromium and nickel heavy metal effects on total sugar and protein content in Glycine max. Res Sq 2020;1:1-20. https://doi.org/10.21203/rs.3.rs-107829/v1

40. Trivedi LD. A study on interactive effects of heavy metal on growth and biochemical changes in medicinal plants [Dissertation]. Ahmedabad: Gujarat University; 2015.

41. Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 2006;15:523-30.

42. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019;8:96. https://doi.org/10.3390/plants8040096

43. Antony A, Nagella P. Effect of heavy metals on the andrographolide content, phytochemicals and antioxidant activity of Andrographis paniculata. Asian J Chem 2020;32:2748-52. https://doi.org/10.14233/ajchem.2020.22831

44. Abdussalam AK. Physiological and biochemical studies on heavy metal toxicity in selected medicinal plants [Dissertation]. Kerala: University of Calicut; 2010. p. 259.

45. Etemadi F, Hashemi M, Randhir R, ZandVakili O, Ebadi A. Accumulation of L-DOPA in various organs of faba bean and influence of drought, nitrogen stress, and processing methods on L-DOPA yield. Crop J 2018;6:426-34. https://doi.org/10.1016/j.cj.2017.12.001

Article Metrics

1 Absract views 0 PDF Downloads 1 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required