Nanotechnology for the bioremediation of heavy metals and metalloids

Urja Sharma Jai Gopal Sharma   

Open Access   

Published:  Jun 09, 2022

Abstract

Contamination of soil and water by heavy metals and metalloids is one of the major issues that are being raised and addressed globally as it has adverse effects on the environment as well as on human health. Since each technique has its own pros and cons, integration of a few methods helps in getting effective and efficient results. Application of nanotechnology has led to the overcoming of various drawbacks of conventional methods of remediation. Nanobioremediation is an extended branch of nanotechnology that deals with the removal of pollutants from the site of contamination by utilizing biogenic nanoparticles or materials synthesized from biological sources that are of nano size. This technique has an edge over other methods because of size of the material; smaller the size, higher would be the surface area to volume ratio and higher the ratio, more surface would be available for the reaction to occur. In recent years, the green synthesis of nanoparticles has gained enormous attention because of the economic and ecological aspects. This review highlights the implications and health risks of heavy metals and metalloids along with the application of nanotechnology in the bioremediation of these contaminants.


Keyword:     Metalloids Heavy metals Nanotechnology Bioremediation Environment.


Citation:

Sharma U, Sharma JG. Nanotechnology for the bioremediation of heavy metals and metalloids. J App Biol Biotech. 2022. Online First.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

Reference

1. Rising Pollution in the Developing World. Outlook on the Global Agenda 2015; 2021. Available from: http://www.wef.ch/1yt62cz [Last accessed on 2021 Dec 18].

2. Dhillon GS, Kaur S, Verma M, Brar SK. Biopolymer-based nanomaterials: Potential applications in bioremediation of contaminated wastewaters and soils. In: Farré M, Barceló D, editors. Comprehensive Analytical Chemistry. Ch. 3. Amsterdam, Netherlands: Elsevier; 2012. p. 91-129. https://doi.org/10.1016/B978-0-444-56328-6.00003-7

3. Bánfalvi G. Heavy metals, trace elements and their cellular effects. In: Banfalvi G, editor. Cellular Effects of Heavy Metals. Dordrecht: Springer Netherlands; 2011. p. 3-28. https://doi.org/10.1007/978-94-007-0428-2_1

4. Substance Priority List Resource Page. ATSDR. Available from: https://www.atsdr.cdc.gov/spl/resources/index.html [Last accessed on 2021 Dec 19].

5. Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler FJ. Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 2018;16:919-946. https://doi.org/10.1007/s10311-018-0737-4

6. Bhardwaj R, Gupta A, Garg JK. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci 2017;31:52-66. https://doi.org/10.1016/j.wsj.2017.02.002

7. Kumar V, Sharma A, Kaur P, Singh Sidhu GP, Bali AS, Bhardwaj R, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019;216:449-62. https://doi.org/10.1016/j.chemosphere.2018.10.066

8. Substance Priority List. ATSDR. Available from: https://www.atsdr. cdc.gov/spl/index.html#2019spl [Last accessed on 2021 Dec 19].

9. Rahman Z, Singh VP. Bioremediation of toxic heavy metals (THMs) contaminated sites: Concepts, applications and challenges. Environ Sci Pollut Res Int 2020;27:27563-81. https://doi.org/10.1007/s11356-020-08903-0

10. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. In: Interface Science and Technology. Amsterdam, Netherlands: Elsevier; 2019. p. 1-27. https://doi.org/10.1016/B978-0-12-813586-0.00001-8

11. Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, et al. Nanomaterials and microbes' interactions: A contemporary overview. 3 Biotech 2019;9:68. https://doi.org/10.1007/s13205-019-1576-0

12. Vázquez-Núñez E, Molina-Guerrero CE, Peña-Castro JM, FernándezLuqueño F, de la Rosa-Álvarez MG. Use of nanotechnology for the bioremediation of contaminants: A review. Processes 2020;8:826. https://doi.org/10.3390/pr8070826

13. Soltani A, Pouypouy H. Standardization and regulations of nanotechnology and recent government policies across the world on Nanomaterials. In: Advances in Phytonanotechnology from Synthesis to Application. United States: Academic Press; 2019. p. 420-46. https://doi.org/10.1016/B978-0-12-815322-2.00020-1

14. Amenta V, Aschberger K, Arena M, Bouwmeester H, Botelho Moniz F, Brandhoff P, et al. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 2015;73:463-76. https://doi.org/10.1016/j.yrtph.2015.06.016

15. Masindi V, Muedi KL. Environmental contamination by heavy metals. In: Heavy Metals. India: IntechOpen; 2018. https://doi.org/10.5772/intechopen.76082

16. Musilova J, Arvay J, Vollmannova A, Toth T, Tomas J. Environmental contamination by heavy metals in region with previous mining activity. Bull Environ Contam Toxicol 2016;97:569-75. https://doi.org/10.1007/s00128-016-1907-3

17. Wang S, Xing D, Jia Y, Li B, Wang K. The distribution of total mercury and methyl mercury in a shallow hypereutrophic lake (Lake Taihu) in two seasons. Appl Geochem 2012;27:343-51. https://doi.org/10.1016/j.apgeochem.2011.09.029

18. Yuan Z, Li Q, Ma X, Han M. Assessment of heavy metals contamination and water quality characterization in the Nanming River, Guizhou Province. Environ Geochem Health 2021;43:1273-86. https://doi.org/10.1007/s10653-020-00710-3

19. Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 2014;4:252-67. https://doi.org/10.3390/biom4010252

20. Nkwunonwo UC, Odika PO, Onyia NI. A review of the health implications of heavy metals in food chain in Nigeria. ScientificWorldJournal 2020;2020:6594109. https://doi.org/10.1155/2020/6594109

21. Ali MM, Hossain D, Al-Imran, Khan MS, Begum M, Osman MH. Environmental pollution with heavy metals: A public health concern. In: Heavy Metals-their Environmental Impacts and Mitigation. India: IntechOpen; 2021.

22. De Souza MJ, Nair S, Loka Bharathi PA, Chandramohan D. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. Ecotoxicology 2006;15:379-84. https://doi.org/10.1007/s10646-006-0068-2

23. Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ Monit Assess 2019;191:419. https://doi.org/10.1007/s10661-019-7528-7

24. Kumar KS, Dahms HU, Lee JS, Kim HC, Lee WC, Shin KH. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol Environ Saf 2014;104:51-71. https://doi.org/10.1016/j.ecoenv.2014.01.042

25. Bajpai R, Upreti DK. Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicol Environ Saf 2012;83:63-70. https://doi.org/10.1016/j.ecoenv.2012.06.001

26. Aksu A. Sources of metal pollution in the urban atmosphere (A case study: Tuzla, Istabul). J Environ Health Sci Eng 2015;13:79. https://doi.org/10.1186/s40201-015-0224-9

27. Kapahi M, Sachdeva S. Bioremediation options for heavy metal pollution. J Health Pollut 2019;9:191203. https://doi.org/10.5696/2156-9614-9.24.191203

28. Abatenh E, Gizaw B, Tsegaye Z, Wassie M. The role of microorganisms in bioremediation-a review. Open J Environ Biol 2017;1:38-46. https://doi.org/10.17352/ojeb.000007

29. Koul B, Taak P. Ex situ soil remediation strategies. In: Koul B, Taak P, editors. Biotechnological Strategies for Effective Remediation of Polluted Soils. Singapore: Springer; 2018. p. 39-57. https://doi.org/10.1007/978-981-13-2420-8_2

30. Singh R, Behera M, Kumar S. Nano-bioremediation: An innovative remediation technology for treatment and management of contaminated sites. In: Bharagava RN, Saxena G, editors. Bioremediation of Industrial Waste for Environmental Safety, Biological Agents and Methods for Industrial Waste Management. Vol. 2. Singapore: Springer; 2020. p. 165-82. https://doi.org/10.1007/978-981-13-3426-9_7

31. Phenrat T, Skácelová P, Petala E, Velosa A, Filip J. Nanoscale zerovalent iron particles for water treatment: From basic principles to fieldscale applications. In: Filip J, Cajthaml T, Najmanová P, ?erník M, Zbo?il R, editors. Advanced Nano-Bio Technologies for Water and Soil Treatment. Cham: Springer International Publishing; 2020. p. 19-52. https://doi.org/10.1007/978-3-030-29840-1_2

32. Ashok KR. Biostimulation Remediation Technologies for Groundwater Contaminants. United States: IGI Global; 2018. p. 381.

33. Pete A, Bharti B, Benton M. Nano-enhanced bioremediation for oil spills: A review. ACS EST Eng 2021;1:928-46. https://doi.org/10.1021/acsestengg.0c00217

34. Tratnyek P, Johnson R. Nanotechnologies for environmental cleanup. Nano Today 2006;1:44-8. https://doi.org/10.1016/S1748-0132(06)70048-2

35. Tosco T, Papini M, Viggi CC, Sethi R. Nanoscale zerovalent iron particles for groundwater remediation: A review. J Clean Prod 2014;77:10-21. 36. Mughal B, Zaidi SZ, Zhang X, Hassan SU. Biogenic nanoparticles: Synthesis, characterisation and applications. Appl Sci 2021;11:2598. https://doi.org/10.3390/app11062598

37. Goutam SP, Saxena G. Biogenic nanoparticles for removal of heavy metals and organic pollutants from water and wastewater: Advances, challenges, and future prospects. In: Bioremediation for Environmental Sustainability. Amsterdam, Netherlands: Elsevier; 2021. p. 623-36. https://doi.org/10.1016/B978-0-12-820524-2.00025-0

38. Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 2014;166:235-42. https://doi.org/10.1016/j.biortech.2014.04.085

39. Koul DB, Taak P. Biotechnological Strategies for Effective Remediation of Polluted Soils. Singapore: Springer; 2018. https://doi.org/10.1007/978-981-13-2420-8

40. Rao CN, Biswas K. Characterization of nanomaterials by physical methods. Annu Rev Anal Chem (Palo Alto Calif) 2009;2:435-62. https://doi.org/10.1146/annurev-anchem-060908-155236

41. Riddin T, Gericke M, Whiteley CG. Biological synthesis of platinum nanoparticles: Effect of initial metal concentration. Enzyme Microb Technol 2010;46:501-5. https://doi.org/10.1016/j.enzmictec.2010.02.006

42. Sudhakar MS, Aggarwal A, Sah MK. Engineering biomaterials for the bioremediation: Advances in nanotechnological approaches for heavy metals removal from natural resources. In: Shah MP, Rodriguez-Couto S, ?engör SS, editors. Emerging Technologies in Environmental Bioremediation. Ch. 14. Amsterdam, Netherlands: Elsevier; 2020. p. 323-39. https://doi.org/10.1016/B978-0-12-819860-5.00014-6

43. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018;9:1050-74. https://doi.org/10.3762/bjnano.9.98

44. Tripathi S, Sanjeevi R, Anuradha J, Chauhan DS, Rathoure AK. Nano-bioremediation: Nanotechnology and bioremediation. In: Biostimulation Remediation Technologies for Groundwater Contaminants. United States: IGI Global; 2018. p. 202-19. https://doi.org/10.4018/978-1-5225-4162-2.ch012

45. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GE. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 2015;8:7278-308. https://doi.org/10.3390/ma8115377

46. Sherry Davis A, Prakash P, Thamaraiselvi K. Nanobioremediation technologies for sustainable environment. In: Prashanthi M, Sundaram R, Jeyaseelan A, Kaliannan T, editors. Bioremediation and Sustainable Technologies for Cleaner Environment. Cham: Springer International Publishing; 2017. p. 13-33. https://doi.org/10.1007/978-3-319-48439-6_2

47. Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 2012;41:2539-44. https://doi.org/10.1039/c2cs15294k

48. Kumari S, Tyagi M, Jagadevan S. Mechanistic removal of environmental contaminants using biogenic nano-materials. Int J Environ Sci Technol 2019;16:7591-606. https://doi.org/10.1007/s13762-019-02468-3

49. Ingale A, Chaudhari A. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J Nanomed Nanotechnol 2013;4:165. https://doi.org/10.4172/2157-7439.1000165

50. Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab J Chem 2019;12:3576-600. https://doi.org/10.1016/j.arabjc.2015.11.002

51. Tsekhmistrenko SI, Bityutskyy VS, Tsekhmistrenko OS, Horalskyi LP, Tymoshok NO, Spivak MY. Bacterial synthesis of nanoparticles: A green approach. Biosyst Divers 2020;28:9-17. https://doi.org/10.15421/012002

52. Baker S, Harini BP, Rakshith D, Satish S. Marine microbes: Invisible nanofactories. J Pharm Res 2013;6:383-8. https://doi.org/10.1016/j.jopr.2013.03.001

53. Ghosh S, Ahmad R, Banerjee K, AlAjmi MF, Rahman S. Mechanistic aspects of microbe-mediated nanoparticle synthesis. Front Microbiol 2021;12:638068. https://doi.org/10.3389/fmicb.2021.638068

54. Peralta-Videa JR, Huang Y, Parsons JG, Zhao L, Lopez-Moreno L, Hernandez-Viezcas JA, et al. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng 2016;1:4. https://doi.org/10.1007/s41204-016-0004-5

55. Baker S, Rakshith D, Kumar DK, Santosh P, Kavitha H, Yashavantha Rao HC, et al. Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts 2013;3:111-7.

56. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharides and phytochemicals: A natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 2011;5:69-78. https://doi.org/10.1049/iet-nbt.2010.0033

57. Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB. Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 2018;336:386-96. https://doi.org/10.1016/j.cej.2017.12.029

58. Kumar A, Dixit CK. Methods for characterization of nanoparticles. In: Nimesh S, Chandra R, Gupta N, editors. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. United Kingdom: Woodhead Publishing; 2017. p. 43-58. https://doi.org/10.1016/B978-0-08-100557-6.00003-1

59. Iravani S. Bacteria in nanoparticle synthesis: Current status and future prospects. Int Sch Res Notices 2014;2014:359316. https://doi.org/10.1155/2014/359316

60. Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res 2021;199:344-70. https://doi.org/10.1007/s12011-020-02138-3

61. Furgal KM, Meyer RL, Bester K. Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 2015;136:321-6. https://doi.org/10.1016/j.chemosphere.2014.11.059

62. Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed 2012;2:953-9. https://doi.org/10.1016/S2221-1691(13)60006-4

63. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 2007;61:3984-7. https://doi.org/10.1016/j.matlet.2007.01.018

64. Wang X, Zhang D, Pan X, Lee DJ, Al-Misned FA, Mortuza MG, et al. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 2017;170:266-73. https://doi.org/10.1016/j.chemosphere.2016.12.020

65. Khanna P, Kaur A, Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J Microbiol Methods 2019;163:105656. https://doi.org/10.1016/j.mimet.2019.105656

66. Uzair B, Liaqat A, Iqbal H, Menaa B, Razzaq A, Thiripuranathar G, et al. Green and cost-effective synthesis of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering (Basel) 2020;7:E129. https://doi.org/10.3390/bioengineering7040129

67. Fatima R, Priya M, Indurthi L, Radhakrishnan V, Sudhakaran R. Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 2020;138:103780. https://doi.org/10.1016/j.micpath.2019.103780

68. Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R. Chlorococcum sp. MM11-a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 2014;27:2. https://doi.org/10.1007/s10811-014-0492-2

69. Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, et al. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanoparticle Res 2016;18:79. https://doi.org/10.1007/s11051-016-3378-1

70. Sundaramanickam A, Kathiraven T, Shanmugam N, Thangavel B. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 2014;5:499-504. https://doi.org/10.1007/s13204-014-0341-2

71. Kumar V, Shanmugam R. Plant-based synthesis of nanoparticles and their impact. In: Nanomaterials in Plants, Algae, and Microorganisms. Amsterdam, Netherlands: Elsevier; 2018. p. 33-57. https://doi.org/10.1016/B978-0-12-811487-2.00002-5

72. Adil SF, Assal ME, Khan M, Al-Warthan A, Siddiqui MR, LizMarzán LM. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans 2015;44:9709-17. https://doi.org/10.1039/C4DT03222E

73. Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 2017;5:4866-83. https://doi.org/10.1016/j.jece.2017.09.026

74. Nath D, Banerjee P. Green nanotechnology-a new hope for medical biology. Environ Toxicol Pharmacol 2013;36:997-1014. https://doi.org/10.1016/j.etap.2013.09.002

75. Christensen L, Vivekanandhan S, Misra M, Mohanty A. Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size. Adv Mat Lett 2011;2:429-34. https://doi.org/10.5185/amlett.2011.4256

76. Singh A, Talat M, Singh D, Srivastava ON. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanoparticle Res 2010;12:1667-75. https://doi.org/10.1007/s11051-009-9835-3

77. Singh J, Kumar V, Kim KH, Rawat M. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environ Res 2019;177:108569. https://doi.org/10.1016/j.envres.2019.108569

78. Fazlzadeh M, Rahmani K, Zarei A, Abdoallahzadeh H, Nasiri F, Khosravi R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol 2017;28:122-30. https://doi.org/10.1016/j.apt.2016.09.003

79. Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. MetalFungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 2021;274:129976. https://doi.org/10.1016/j.chemosphere.2021.129976

80. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanoparticle Res 2008;10:507-17. https://doi.org/10.1007/s11051-007-9275-x

81. Vahabi K, Mansoori GA, Karimi S. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A route for large-scale production of AgNPs). Insciences J 2011;1:65-79. https://doi.org/10.5640/insc.010165

82. Narayanan KB, Park HH, Sakthivel N. Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 2013;116:485-90. https://doi.org/10.1016/j.saa.2013.07.066

83. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res 2013;12:7-11. https://doi.org/10.4314/tjpr.v12i1.2

84. Honary S, Gharaei-Fathabad E, Barabadi H, Naghibi F. Fungusmediated synthesis of gold nanoparticles: Anovel biological approach to nanoparticle synthesis. J Nanosci Nanotechnol 2013;13:1427-30. https://doi.org/10.1166/jnn.2013.5989

85. Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J Clean Prod 2020;272:122880. https://doi.org/10.1016/j.jclepro.2020.122880

86. Sen K, Sinha P, Lahiri S. Time dependent formation of gold nanoparticles in yeast cells: A comparative study. Biochem Eng J 2011;1:1-6. https://doi.org/10.1016/j.bej.2011.02.014

87. Seshadri S, Saranya K, Kowshik M. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 2011;27:1464-9. https://doi.org/10.1002/btpr.651

88. Faramarzi S, Anzabi Y, Jafarizadeh-Malmiri H. Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae-fabrication and characterization. Arch Microbiol 2020;202:1203-9. https://doi.org/10.1007/s00203-020-01831-0

89. Peiris M, Gunasekara T, Jayaweera PM, Fernando S. TiO? nanoparticles from baker's yeast: A potent antimicrobial. J Microbiol Biotechnol 2018;28:1664-70. https://doi.org/10.4014/jmb.1807.07005

90. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 2009;15:1231-4. https://doi.org/10.1016/j.matlet.2009.02.042

91. Chatterjee S, Mahanty S, Das P, Chaudhuri P, Das S. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chem Eng J 2019;2019:123790. https://doi.org/10.1016/j.cej.2019.123790

92. San Keskin NO, Celebioglu A, Sarioglu OF, Uyar T, Tekinay T. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids Surf B Biointerfaces 2018;161:169-76. https://doi.org/10.1016/j.colsurfb.2017.10.047

93. Kim HK, Jeong SW, Yang JE, Choi YJ. Highly efficient and stable removal of arsenic by live cell fabricated magnetic nanoparticles. Int J Mol Sci 2019;20:E3566. https://doi.org/10.3390/ijms20143566

94. Mukherjee D, Ghosh S, Majumdar S, Annapurna K. Green synthesis of α-Fe2O3 nanoparticles for arsenic(V) remediation with a novel aspect for sludge management. J Environ Chem Eng 2016;4:639-50. https://doi.org/10.1016/j.jece.2015.12.010

95. Al-Qahtani KM. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res 2017;43:269-74. https://doi.org/10.1016/j.ejar.2017.10.003

96. Venkateswarlu S, Kumar SH, Jyothi NV. Rapid removal of Ni(II) from aqueous solution using 3-mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Resour Ind 2015;12:1-7. https://doi.org/10.1016/j.wri.2015.09.001

97. Wang X, Zhang D, Qian H, Liang Y, Pan X, Gadd GM. Interactions between biogenic selenium nanoparticles and goethite colloids and consequence for remediation of elemental mercury contaminated groundwater. Sci Total Environ 2018;613-614:672-8. https://doi.org/10.1016/j.scitotenv.2017.09.113

98. Choudhury PR, Bhattacharya P, Ghosh S, Majumdar S, Saha S, Sahoo GC. Removal of Cr (VI) by synthesized Titania embedded dead yeast nanocomposite: Optimization and modeling by response surface methodology. J Environ Chem Eng 2017;5:214-21. https://doi.org/10.1016/j.jece.2016.11.041

99. Ravikumar KV, Kumar D, Kumar G, Mrudula P, Natarajan C, Mukherjee A. Enhanced Cr(VI) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor. Ind Eng Chem Res 2016;55:5973-82. https://doi.org/10.1021/acs.iecr.6b01006

100. Somu P, Paul S. Casein based biogenic-synthesized zinc oxide nanoparticles simultaneously decontaminate heavy metals, dyes, and pathogenic microbes: A rational strategy for wastewater treatment. J Chem Technol Biotechnol 2018;93:2962-76. https://doi.org/10.1002/jctb.5655

101. Sethy NK, Arif Z, Mishra P, Kumar P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Proc Synthe 2020;9:18. https://doi.org/10.1515/gps-2020-0018

102. Balakrishnan GS, Rajendran K, Kalirajan J. Microbial synthesis of magnetite nanoparticles for arsenic removal. J Appl Biol Biotechnol 2020;8:7-5.

103. Jiang S, Ho CT, Lee JH, Duong HV, Han S, Hur HG. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 2012;87:621-4. https://doi.org/10.1016/j.chemosphere.2011.12.083

104. Francy N, Shanthakumar S, Chiampo F, Sekhar YR. Remediation of lead and nickel contaminated soil using nanoscale zero-valent iron (nZVI) particles synthesized using green leaves: First results. Processes 2020;8:1453. https://doi.org/10.3390/pr8111453

105. Mahmoud AE, Al-Qahtani KM, Alflaij SO, Al-Qahtani SF, Alsamhan FA. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci Rep 2021;11:12547. https://doi.org/10.1038/s41598-021-91093-7

106. Samuel MS, Datta S, Chandrasekar N, Balaji R, Selvarajan E, Vuppala S. Biogenic synthesis of iron oxide nanoparticles using Enterococcus faecalis: Adsorption of hexavalent chromium from aqueous solution and in vitro cytotoxicity analysis. Nanomaterials (Basel) 2021;11:3290. https://doi.org/10.3390/nano11123290

107. Verma A, Bharadvaja N. Plant-mediated synthesis and characterization of silver and copper oxide nanoparticles: Antibacterial and heavy metal removal activity. J Clust Sci 2021:1-16. https://doi.org/10.1007/s10876-021-02091-8

108. Mohammed YM, Khedr YI. Applications of Fusarium solani YMM20 in bioremediation of heavy metals via enhancing extracellular green synthesis of nanoparticles. Water Environ Res 2021;93:1600-7. https://doi.org/10.1002/wer.1542

109. Misra M, Chattopadhyay S, Sachan A, Sachan SG. Microbially synthesized nanoparticles and their applications in environmental clean-up. Environ Technol Rev 2022;11:18-32. https://doi.org/10.1080/21622515.2021.2011431

110. Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications. Environ Pollut 2020;264:114728. https://doi.org/10.1016/j.envpol.2020.114728

111. Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, et al. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ Pollut 2019;246:608-20. https://doi.org/10.1016/j.envpol.2018.12.076

112. Tiwari N, Santhiya D, Sharma JG. Microbial remediation of micronano plastics: Current knowledge and future trends. Environ Pollut 2020;265:115044. https://doi.org/10.1016/j.envpol.2020.115044

113. Bansal M, Santhiya D, Sharma JG. Behavioural mechanisms of microplastic pollutants in marine ecosystem: Challenges and remediation measurements. Water Air Soil Pollut 2021;232:372. https://doi.org/10.1007/s11270-021-05301-1

114. Mandeep, Shukla P. Microbial nanotechnology for bioremediation of industrial wastewater. Front Microbiol 2020;11:590631. 115. Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: A review. Environ Chem Lett 2021;19:355-74. https://doi.org/10.1007/s10311-020-01074-x

116. Banu AN, Kudesia N, Raut AM, Pakrudheen I, Wahengbam J. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: A review. Environ Chem Lett 2021;19:4275-96. https://doi.org/10.1007/s10311-021-01304-w

Article Metrics

4 Absract views 0 PDF Downloads 4 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Name Required
Email Required Invalid Email Address

Comment required
Similar Articles

Bioremediation of heavy metals from aquatic environment through microbial processes: A potential role for probiotics?

Marie Andrea Laetitia Huët, Daneshwar Puchooa

Evaluation of heavy metals in selected fruits in Umuahia market, Nigeria: Associating toxicity to effect for improved metal risk assessment

Uroko Robert Ikechukwu, Victor Eshu Okpashi, Uchenna Nancy Oluomachi, Nwuke Chunedu Paulinus, Nduka Florence Obiageli, Ogbonnaya Precious

Effect of different industrial and domestic effluents on growth, yield, and heavy metal accumulation in Turnip (Brassica rapa L.)

Noor ul Ain, Qurat ul Ain, Sadaf Javeria, Sana Ashiq, Kanwal Ashiq, Muhammad Sufyan Akhtar

Ex-situ biofilm mediated approach for bioremediation of selected heavy metals in wastewater of textile industry

Anu Kumar, Shivani, Bhanu Krishan, Mrinal Samtiya, Tejpal Dhewa

Nanotechnology for agro-environmental sustainability

Ajar Nath Yadav

Practiced Gram negative bacteria from dyeing industry effluents snub metal toxicity to survive

Channarayapatna-Ramesh Sunilkumar , Lobo Rachel, Gurulingaiah Bhavya, Kujur Swati , R. Samaga Sridhar, J. Samanth Kumar, K. Ramachandra Kini, H. S. Prakash, Nagaraja Geetha

Microbial synthesis of magnetite nanoparticles for arsenic removal

Gopal Samy Balakrishnan, Karthik Rajendran, Jegatheesan Kalirajan

Characterization of Calotropis procera root peroxidase and its potential to mediate remediation of phenolic pollutant from petroleum refinery effluent

Enoch Banbilbwa Joel, Simon Gabriel Mafulul, Ezra Adams Jeremiah, Adepeju Aberuagba, Raphael Idowu Adeoye, Lazarus Joseph Goje, Adedoyin Igunnu, Sylvia Omonirume Malomo

Bioremediation of hazardous azo dye methyl red by a newly isolated Enterobacter asburiae strain JCM6051 from industrial effluent of Uttarakhand regions

Swati, Padma Singh

Microplastics accumulation in agricultural soil: Evidence for the presence, potential effects, extraction, and current bioremediation approaches

Varsha Yadav, Saveena Dhanger, Jaigopal Sharma

Seasonal effect on the diversity of soil fungi and screening for arsenic tolerance and their remediation

Dheeraj Pandey, Harbans Kaur Kehri, Ifra Zoomi, Shweta Chaturvedi, Kanhaiya Lal Chaudhary

Bioremediation and Waste Management for Environmental Sustainability

Ajar Nath Yadav, Deep Chandra Suyal, Divjot Kour, Vishnu D. Rajput, Ali Asghar Rastegari, Joginder Singh

Microbe-mediated bioremediation: Current research and future challenges

Divjot Kour, Sofia Shareif Khan, Harpreet Kour, Tanvir Kaur, Rubee Devi, Pankaj Kumar Rai, Christina Judy, Chloe McQuestion, Ava Bianchi, Sara Spells, Rajinikanth Mohan, Ashutosh Kumar Rai, Ajar Nath Yadav

Bioremediation— sustainable tool for diverse contaminants management: Current scenario and future aspects

Manali Singh, Kuldeep Jayant, Shivani Bhutani, Anshi Mehra, Tanvir Kaur, Divjot Kour, Deep Chandra Suyal, Sangram Singh, Ashutosh Kumar Rai, Ajar Nath Yadav

Industrial biotechnology: An Indian perspective

Kumud Tiwari, Garima Singh, Gajender Singh, Sonika Kumari Sharma, Samarendra Kumar Singh