1. Rigobelo EC, Nahas E. Seasonal fluctuations of bacterial population and microbial activity in soils cultivated with Eucalyptus and Pinus. Sci Agricola 2004;61:88-93. https://doi.org/10.1590/S0103-90162004000100015 |
|
2. Taketani RG, Lançoni MD, Kavamura VN, Durrer A, Andreote FD, Melo IS. Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system. Microb Ecol 2017;73:153-61. https://doi.org/10.1007/s00248-016-0835-4 | |
|
3. Raimi A, Adeleke R, Roopnarain A. Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric 2017;3:1400933. https://doi.org/10.1080/23311932.2017.1400933 | |
|
4. Buee M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, et al. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 2009;184:449-56. https://doi.org/10.1111/j.1469-8137.2009.03003.x | |
|
5. Burke DJ, López-Gutiérrez JC, Smemo KA, Chan CR. Vegetation and soil environment influence the spatial distribution of root-associated fungi in a mature beech-maple forest. Appl Environ Microbiol 2009;75:7639-48. https://doi.org/10.1128/AEM.01648-09 | |
|
6. Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 2006;103:626-31. https://doi.org/10.1073/pnas.0507535103 | |
|
7. Whitford WG. The importance of the biodiversity of soil biota in arid ecosystems. Biodivers Conserv 1996;5:185-95. https://doi.org/10.1007/BF00055829 | |
|
8. Belnap J, Welter JR, Grimm NB, Barger N, Ludwig JA. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 2005;86:298-307. Doi: 10.1890/03-0567. https://doi.org/10.1890/03-0567 | |
|
9. Zak J. Fungal communities of desert ecosystems: Links to climate change. the fungal community: Its organization and role in the ecosystem. Mycology 2005;23:659-81. https://doi.org/10.1201/9781420027891.ch33 | |
|
10. Chary NS, Kamala CT, Raj DS. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 2008;69:513-24. https://doi.org/10.1016/j.ecoenv.2007.04.013 | |
|
11. Matschullat J. Arsenic in the geosphere-a review. Sci Total Environ 2000;249:297-312. https://doi.org/10.1016/S0048-9697(99)00524-0 | |
|
12. Gupta DK, Srivastava S, Huang HG, Romero-Puertas MC, Sandalio LM. Arsenic tolerance and detoxification mechanisms in plants. In: Detoxification of Heavy Metals. Berlin, Heidelberg: Springer; 2011. p. 169-79. https://doi.org/10.1007/978-3-642-21408-0_9 | |
|
13. Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G. Arsenic in the environment: Biology and chemistry. Sci Total Environ 2007;379:109-20. https://doi.org/10.1016/j.scitotenv.2007.02.037 | |
|
14. Das TK. Arsenic menace in West Bengal (India) and its mitigation through toolbox intervention: An experience to share. In: Ground Water Development-Issues and Sustainable Solutions. Singapore: Springer; 2019. p. 305-14. https://doi.org/10.1007/978-981-13-1771-2_18 | |
|
15. Zhang Z, Guo H, Liu S, Weng H, Han S, Gao Z. Mechanisms of groundwater arsenic variations induced by extraction in the Western Hetao Basin, Inner Mongolia, China. J Hydrol 2020;583:124599. https://doi.org/10.1016/j.jhydrol.2020.124599 | |
|
16. Mondal P, Bhowmick S, Chatterjee D, Figoli A, van der Bruggen B. Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere 2013;92:157-70. https://doi.org/10.1016/j.chemosphere.2013.01.097 | |
|
17. Wysocki R, Bobrowicz P, U?aszewski S. The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 1997;272:30061-6. https://doi.org/10.1074/jbc.272.48.30061 | |
|
18. Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen A, et al. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol Biol Cell 2004;15:2049-60. https://doi.org/10.1091/mbc.e03-04-0236 | |
|
19. Persson BL, Berhe A, Fristedt U, Martinez P, Pattison J, Petersson J, et al. Phosphate permeases of Saccharomyces cerevisiae. Biochim Biophys Acta 1998;1365:23-30. https://doi.org/10.1016/S0005-2728(98)00037-1 | |
|
20. Liu WJ, Zhu YG, Smith FA, Smith SE. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 2004;55:1707-13. https://doi.org/10.1093/jxb/erh205 | |
|
21. Rahman A, Nahar N, Nawani NN, Jass J, Ghosh S, Olsson B, et al. Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Genomics 2015;106:384-92. https://doi.org/10.1016/j.ygeno.2015.09.006 | |
|
22. Timonin MI. The interaction of higher plants and soil micro-organisms: I. Microbial population of rhizosphere of seedlings of certain cultivated plants. Can J Res 1940;18:307-17. https://doi.org/10.1139/cjr40c-031 | |
|
23. Gilman J. A manual of soil fungi. Soil Sci 1957;84:183. https://doi.org/10.1097/00010694-195708000-00021 | |
|
24. Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B, Goswami AB, et al. Status of groundwater arsenic contamination in the state of West Bengal, India: A 20?year study report. Mol Nutr Food Res 2009;53:542-51. https://doi.org/10.1002/mnfr.200700517 | |
|
25. Shah BA. Arsenic-contaminated groundwater in Holocene sediments from parts of middle Ganga plain, Uttar Pradesh, India. Curr Sci 2010;98:1359-65. | |
|
26. Paul D. Research on heavy metal pollution of river Ganga: A review. Ann Agrarian Sci 2017;15:278-86. https://doi.org/10.1016/j.aasci.2017.04.001 | |
|
27. Vargas-Gastélum L, Romero-Olivares AL, Escalante AE, Rocha- Olivares A, Brizuela C, Riquelme M. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol Ecol 2015;91:fiv044. https://doi.org/10.1093/femsec/fiv044 | |
|
28. He J, Tedersoo L, Hu A, Han C, He D, Wei H, et al. Greater diversity of soil fungal communities and distinguishable seasonal variation in temperate deciduous forests compared with subtropical evergreen forests of eastern China. FEMS Microbiol Ecol 2017;93:fix069. https://doi.org/10.1093/femsec/fix069 | |
|
29. Vo?íšková J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 2013;7:477-86. https://doi.org/10.1038/ismej.2012.116 | |
|
30. Shigyo N, Umeki K, Hirao T. Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front Microbiol 2019;10:1944. https://doi.org/10.3389/fmicb.2019.01944 | |
|
31. Saravanakumar K, Kaviyarasan V. Seasonal distribution of soil fungi and chemical properties of montane wet temperate forest types of Tamil Nadu. Afr J Plant Sci 2010;4:190-6. | |
|
32. Oliveira BR, Crespo MB, San Romão MV, Benoliel MJ, Samson RA, Pereira VJ. New insights concerning the occurrence of fungi in water sources and their potential pathogenicity. Water Res 2013;47:6338-47. https://doi.org/10.1016/j.watres.2013.08.004 | |
|
33. do Nascimento Barbosa R, Bezerra JD, Costa PM, Lima-Júnior NC, de Souza Galvão IR, dos Santos AA Jr., et al. Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: Diversity in an area of environmental preservation. Revi Biol Trop 2016;64:45-53. https://doi.org/10.15517/rbt.v64i1.18223 | |
|
34. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science 2014;346:1256688. https://doi.org/10.1126/science.1256688 | |
|
35. Smith SE, Rosewarne GM, Ayling SM, Dickson S, Schachtman DP, Barker SJ, et al. Phosphate transfer between vesicular-arbuscular mycorrhizal symbionts: Insights from confocal microscopy, microphysiology, and molecular studies. Curr Top Plant Physiol 1998;19:111-23. | |
|
36. Hiremath PG, Navya PN, Chandramohan V, Thomas T. Isolation, screening, and identification of fungal organisms for biosorption of fluoride: Kinetic study and statistical optimization of biosorption parameters. J Biochem Technol 2016;7:1069. | |
|
37. Oremland RS, Stolz JF. The ecology of arsenic. Science 2003;300:939-44. https://doi.org/10.1126/science.1081903 | |
|
38. Wu J. A Comparative Study of Arsenic Methylation in a Plant, Yeast and Bacterium Wollongong: The University of Wollongong, Research Online; 2005. | |
|
39. Su SM, Zeng XB, Li LF, Duan R, Bai LY, Li AG, et al. Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. J Hazard Mater 2012;243:364-7. https://doi.org/10.1016/j.jhazmat.2012.09.061 | |
|
40. Jia Y, Huang H, Zhong M, Wang FH, Zhang LM, Zhu YG. Microbialarsenic methylation in soil and rice rhizosphere. Environ Sci Technol 2013;47:3141-8. https://doi.org/10.1021/es303649v | |
|
41. Anawar HM, Rengel Z, Damon P, Tibbett M. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environ Pollut 2018;233:1003-12. https://doi.org/10.1016/j.envpol.2017.09.098 | |
|
42. Bagyaraj DJ, Sharma MP, Maiti D. Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 2015;10:1288-93. | |
|
43. Suresh N, Das A. Molecular cloning of alkaline phosphatase, acid phosphatase and phytase genes from Aspergillus fumigatus for applications in biotechnological industries. J Pharm Sci Res 2014;6:5. | |
|
44. Nahas E. Control of acid phosphatases expression from Aspergillus niger by soil characteristics. Braz Arch Biol Technol 2015;58:658-66. https://doi.org/10.1590/S1516-89132015050485 | |
|
45. de Oliveira Mendes G, de Freitas AL, Pereira OL, da Silva IR, Vassilev NB, Costa MD. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 2014;64:239-49. https://doi.org/10.1007/s13213-013-0656-3 | |
|
46. Edvantoro BB, Naidu R, Megharaj M, Merrington G, Singleton I. Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 2004;25:207-17. https://doi.org/10.1016/j.apsoil.2003.09.006 | |
|
47. ?er?anský S, Kolen?ík M, Ševc J, Urík M, Hiller E. Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresour Technol 2009;100:1037-40. https://doi.org/10.1016/j.biortech.2008.07.030 | |
|
48. Youssef KA, Ghareib M, El Dein MM. Purification and general properties of extracellular phytase from Aspergillus flavipes. Zentralbl Mikrobiol 1987;142:397-402. https://doi.org/10.1016/S0232-4393(87)80087-2 | |
|
49. Sharaf EF, Alharbi E. Removal of heavy metals from waste water of tanning leather industry by fungal species isolated from polluted soil. Afr J Biotechnol 2013;12:1-5. https://doi.org/10.5897/AJB2013.12224 | |
|
50. Guimarães LH, Segura FR, Tonani L, von-Zeska-Kress MR, Rodrigues JL, Calixto LA, et al. Arsenic volatilization by Aspergillus sp. and Penicillium sp. isolated from rice rhizosphere as a promising eco-safe tool for arsenic mitigation. J Environ Manage 2019;237:170-9. https://doi.org/10.1016/j.jenvman.2019.02.060 | |
|
51. Maheswari S, Murugesan AG. Remediation of arsenic in soil by Aspergillus nidulans isolated from an arsenic?contaminated site. Environ Technol 2009;30:921-6. https://doi.org/10.1080/09593330902971279 | |
|
52. Maheswari S, Murugesan AG. Biosorption of As (III) ions from aqueous solution using dry, heat?treated and NaOH?treated Aspergillus nidulans. Environ Technol 2011;32:211-9. https://doi.org/10.1080/09593330.2010.494690 | |
|
53. Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD. Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 2015;119:1278-90. https://doi.org/10.1111/jam.12948 | |
|