The presence of arsenic in water is linked not only to health concerns, but also to the socio-economic conditions of a huge population in poor countries. The severity of As-poisoning might be accelerated by poor health and nutritional status. Many people suffer from pre-cancerous skin keratosis, Bowen’s disease, and Arsenicosis, among other conditions. Long-term exposure can cause cancer. For in vitro screening of As tolerant plant, four plants viz., Triticum aestivum, Lycopersicon esculentum, Solanum melongena, and Capsicum annuum, were raised in As amended triple sterilized soil and sand mixture (1:1 ratio). L. esculentum and S. melongena could survive up to 100 ppm but extremely poor growth and biomass were recorded. The maximum tolerance was recorded in T. aestivum up to 150 ppm, whereas least survival was recorded for C. annuum.
Pandey D, Kehri HK, Zoomi I, Chaturvedi S, Chaudhary KL. In-vitro evaluation of arsenic accumulation and tolerance in some agricultural crops growing adjacent to the Ganga River. J Appl Biol Biotech. 2022; 10(Suppl 1):10–17.
1. Mazumder DG. Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol 2005;206(2):169-75. https://doi.org/10.1016/j.taap.2004.08.025 | |
2. Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, et al. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 2018;15(1):59. https://doi.org/10.3390/ijerph15010059 | |
3. Shrivastava A, Ghosh D, Dash A, Bose S. Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 2015;1(1):35-46. https://doi.org/10.1007/s40726-015-0004-2 | |
4. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, et al. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 2006;24:142-63. | |
5. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 2011;123(2):305-32. https://doi.org/10.1093/toxsci/kfr184 | |
6. Huysmans KD, Frankenberger WT. Arsenic resistant microorganisms isolated from agricultural drainage water and evaporation pond sediments. Water Air Soil Pollut 1990;53(1-2):159-68. https://doi.org/10.1007/BF00155000 | |
7. Phillips DJ. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aqua Toxicol 1990;16(3):151-86. https://doi.org/10.1016/0166-445X(90)90036-O | |
8. Bhattacharya P, Chatterjee D, Jacks G. Occurrence of arsenic-contaminated groundwater in alluvial aquifers from Delta plains, eastern India: options for safe drinking water supply. Int J Water Resour Dev 1997;13(1):79-92.9. Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G. Arsenic in the environment: biology and chemistry. Sci Total Environ 2007;1:379 (2-3):109-20. https://doi.org/10.1080/07900629749944 | |
10. Sánchez Y, Amrán D, Fernández C, de Blas E, Aller P. Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK). Int J Cancer 2008;123(5):1205-14. https://doi.org/10.1002/ijc.23639 | |
11. Helmja K, Vaher M, Gorbatšova J, Kaljurand M. Characterization of bioactive compounds contained in vegetables of the Solanaceae family by capillary electrophoresis. In: Proceedings of the Estonian academy of sciences, Chemistry, vol. 56(4), 2007. https://doi.org/10.3176/chem.2007.4.02 | |
12. Badia AD, Spina AA, Vassalotti G. Capsicum annuum L.: an overview of biological activities and potential nutraceutical properties in humans and animals. J Nutr Ecol Food Res 2017;4(2):167-77. https://doi.org/10.1166/jnef.2017.1163 | |
13. Malhotra H, Sangha MK, Pathak D, Choudhary OP, Kumar P, Rathore P. A simple hydroponic variant for screening cotton genotypes for salinity tolerance. Crop Improv 2014;41(2):134-9. | |
14. Zhu YG, Rosen BP. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 2009;20(2):220-4. https://doi.org/10.1016/j.copbio.2009.02.011 | |
15. Fcavas PJ, Pratas J, Varun M, D'Souza R, Paul MS. Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. Maria C. Hernandez-Soriano (ed.) In: Environmental risk assessment of soil contamination, Intech Open, pp 428-516, 2014. | |
16. Ahmed FS, Killham K, Alexander I. Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 2016; 283 (1-2):33. https://doi.org/10.1007/s11104-005-0415-8 | |
17. Barbafieri M, Japenga J, Romkens P, Petruzzelli G, Pedron F. Protocols for applying phytotechnologies in metal-contaminated soils. Gupta DK (ed.) In: Plant-based remediation processes, Springer, Berlin, Germany, pp 19-37, 2013. https://doi.org/10.1007/978-3-642-35564-6_2 | |
18. Carbonell-Barrachina AA, Burló F, Burgos-Hernandez A, López E, Mataix J. The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hortic 1999;71(3-4):167-76. https://doi.org/10.1016/S0304-4238(97)00114-3 | |
19. Srivastava S, Srivastava AK, Suprasanna P, D'souza S. Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Biol 2009;60:3419-31. https://doi.org/10.1093/jxb/erp181 | |
20. Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 2010;152(4):2211-21. https://doi.org/10.1104/pp.109.150862 | |
21. Zhang G, Liu H, Liu R, Qu J. Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface. J Hazard Mater 2009;168(2-3):820-5. https://doi.org/10.1016/j.jhazmat.2009.02.137 | |
22. Shi GL, Li DJ, Wang YF, Liu CH, Hu ZB, Lou LQ, et al. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Sci Total Environ 2019;667:532-9. https://doi.org/10.1016/j.scitotenv.2019.02.394 | |
23. Liu Q, Zheng C, Hu CX, Tan Q, Sun XC, Su JJ. Effects of high concentrations of soil arsenic on the growth of winter wheat (Triticum aestivum L.) and rape (Brassica napus). Plant Soil Environ 2012;58(1):22-7. https://doi.org/10.17221/311/2011-PSE | |
24. Quanji L, Chengxiao HU, Qiling T, Xuecheng S, Jingjun SU, Liang Y. Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. J Environ Sci 2008;20(3):326-31. https://doi.org/10.1016/S1001-0742(08)60051-0 | |
25. Erakhrumen AA, Agbontalor A. Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2007;2(7):151-6. | |
26. Wuana RA, Okieimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Net, pp 1-20, Ecol 201, 2011.http://doi. org/10.5402/2011/402647. https://doi.org/10.5402/2011/402647 | |
27. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, et al. A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 2007;19(3):1123-33. https://doi.org/10.1105/tpc.106.041871 | |
28. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Nat Acad Sci 2008;105(29):9931-5. https://doi.org/10.1073/pnas.0802361105 | |
29. Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 2009a;43(10):3778-83. https://doi.org/10.1021/es803643v | |
30. Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 2009b;150(4):2071-80. https://doi.org/10.1104/pp.109.140350 | |
31. Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, et al. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremed 2011;13(8):788-804. https://doi.org/10.1080/15226514.2010.525562 | |
32. Miteva E. Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal 2002;33(11-12):1917-26. https://doi.org/10.1081/CSS-120004832 | |
3. Shrivastava A, Ghosh D, Dash A, Bose S. Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 2015;1(1):35-46. https://doi.org/10.1007/s40726-015-0004-2 | |
4. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, et al. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 2006;24:142-63. | |
5. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 2011;123(2):305-32. https://doi.org/10.1093/toxsci/kfr184 | |
6. Huysmans KD, Frankenberger WT. Arsenic resistant microorganisms isolated from agricultural drainage water and evaporation pond sediments. Water Air Soil Pollut 1990;53(1-2):159-68. https://doi.org/10.1007/BF00155000 | |
7. Phillips DJ. Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aqua Toxicol 1990;16(3):151-86. https://doi.org/10.1016/0166-445X(90)90036-O | |
8. Bhattacharya P, Chatterjee D, Jacks G. Occurrence of arsenic-contaminated groundwater in alluvial aquifers from Delta plains, eastern India: options for safe drinking water supply. Int J Water Resour Dev 1997;13(1):79-92.9. Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G. Arsenic in the environment: biology and chemistry. Sci Total Environ 2007;1:379 (2-3):109-20. https://doi.org/10.1080/07900629749944 | |
10. Sánchez Y, Amrán D, Fernández C, de Blas E, Aller P. Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK). Int J Cancer 2008;123(5):1205-14. https://doi.org/10.1002/ijc.23639 | |
11. Helmja K, Vaher M, Gorbatšova J, Kaljurand M. Characterization of bioactive compounds contained in vegetables of the Solanaceae family by capillary electrophoresis. In: Proceedings of the Estonian academy of sciences, Chemistry, vol. 56(4), 2007. https://doi.org/10.3176/chem.2007.4.02 | |
12. Badia AD, Spina AA, Vassalotti G. Capsicum annuum L.: an overview of biological activities and potential nutraceutical properties in humans and animals. J Nutr Ecol Food Res 2017;4(2):167-77. https://doi.org/10.1166/jnef.2017.1163 | |
13. Malhotra H, Sangha MK, Pathak D, Choudhary OP, Kumar P, Rathore P. A simple hydroponic variant for screening cotton genotypes for salinity tolerance. Crop Improv 2014;41(2):134-9. | |
14. Zhu YG, Rosen BP. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 2009;20(2):220-4. https://doi.org/10.1016/j.copbio.2009.02.011 | |
15. Fcavas PJ, Pratas J, Varun M, D'Souza R, Paul MS. Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. Maria C. Hernandez-Soriano (ed.) In: Environmental risk assessment of soil contamination, Intech Open, pp 428-516, 2014. | |
16. Ahmed FS, Killham K, Alexander I. Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 2016; 283 (1-2):33. https://doi.org/10.1007/s11104-005-0415-8 | |
17. Barbafieri M, Japenga J, Romkens P, Petruzzelli G, Pedron F. Protocols for applying phytotechnologies in metal-contaminated soils. Gupta DK (ed.) In: Plant-based remediation processes, Springer, Berlin, Germany, pp 19-37, 2013. https://doi.org/10.1007/978-3-642-35564-6_2 | |
18. Carbonell-Barrachina AA, Burló F, Burgos-Hernandez A, López E, Mataix J. The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hortic 1999;71(3-4):167-76. https://doi.org/10.1016/S0304-4238(97)00114-3 | |
19. Srivastava S, Srivastava AK, Suprasanna P, D'souza S. Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Biol 2009;60:3419-31. https://doi.org/10.1093/jxb/erp181 | |
20. Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 2010;152(4):2211-21. https://doi.org/10.1104/pp.109.150862 | |
21. Zhang G, Liu H, Liu R, Qu J. Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface. J Hazard Mater 2009;168(2-3):820-5. https://doi.org/10.1016/j.jhazmat.2009.02.137 | |
22. Shi GL, Li DJ, Wang YF, Liu CH, Hu ZB, Lou LQ, et al. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Sci Total Environ 2019;667:532-9. https://doi.org/10.1016/j.scitotenv.2019.02.394 | |
23. Liu Q, Zheng C, Hu CX, Tan Q, Sun XC, Su JJ. Effects of high concentrations of soil arsenic on the growth of winter wheat (Triticum aestivum L.) and rape (Brassica napus). Plant Soil Environ 2012;58(1):22-7. https://doi.org/10.17221/311/2011-PSE | |
24. Quanji L, Chengxiao HU, Qiling T, Xuecheng S, Jingjun SU, Liang Y. Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. J Environ Sci 2008;20(3):326-31. https://doi.org/10.1016/S1001-0742(08)60051-0 | |
25. Erakhrumen AA, Agbontalor A. Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2007;2(7):151-6. | |
26. Wuana RA, Okieimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Net, pp 1-20, Ecol 201, 2011.http://doi. org/10.5402/2011/402647. https://doi.org/10.5402/2011/402647 | |
27. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, et al. A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 2007;19(3):1123-33. https://doi.org/10.1105/tpc.106.041871 | |
28. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Nat Acad Sci 2008;105(29):9931-5. https://doi.org/10.1073/pnas.0802361105 | |
29. Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 2009a;43(10):3778-83. https://doi.org/10.1021/es803643v | |
30. Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 2009b;150(4):2071-80. https://doi.org/10.1104/pp.109.140350 | |
31. Wu Q, Wang S, Thangavel P, Li Q, Zheng H, Bai J, et al. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. Int J Phytoremed 2011;13(8):788-804. https://doi.org/10.1080/15226514.2010.525562 | |
32. Miteva E. Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal 2002;33(11-12):1917-26. https://doi.org/10.1081/CSS-120004832 | |
Year
Month