1. Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences. 2005; 24: 23–58. https://doi.org/10.1080/07352680590910410 | | 2. Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R,Huner NA, Finn CE, Chen TH, Hurry V. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in populus spp. Plant, Cell and Environment. 2006; 29:1259–1272. https://doi.org/10.1111/j.1365-3040.2006.01505.x | | | 3. Blum A. Crop responses to drought and the interpretation of adaptation. Plant Growth Regulation. 1996; 20: 135–148. https://doi.org/10.1007/BF00024010 | | | 4. Chen JQ, Dong Y, Wang YJ, Liu Q, Zhang JS. 2003. An AP2/EREBP-type transcript-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theoretical and Applied Genetics; 107: 972–979. https://doi.org/10.1007/s00122-003-1346-5 | | | 5. Chen L, Zhang Z, Liang H, Liu H, Du L, Xu H, Xin Z. Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat. J Exp Bot. 2008; 59:4195–4204. https://doi.org/10.1093/jxb/ern259 | | | 6. Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y.Cold-induced modulation and functional analyses of the DREbinding transcription factor gene, GmDREB3, in soybean (Glycine max L). J Exp Bot. 2009; 60:121–135. https://doi.org/10.1093/jxb/ern269 | | | 7. Fowler S and Thomashow. MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002; 14: 1675-1690. https://doi.org/10.1105/tpc.003483 | | | 8. Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol. 2004; 7:465–471. https://doi.org/10.1016/j.pbi.2004.04.007 | | | 9. Guo A, He K, Liu D, Bai S, Gu X. DATF: a database of Arabidopsis transcription factors. Bioinformatics. 2005; 21:2568–2569. https://doi.org/10.1093/bioinformatics/bti334 | | | 10. Hong JP, Kim WT. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta. 2005; 220: 875–888. https://doi.org/10.1007/s00425-004-1412-5 | | | 11. Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M,ShinozakiK,Yamaguchi-Shinozaki K. Functional analysis of 012 Nasreen et al. / Journal of Applied Biology & Biotechnology 1 (02); 2013: 009-012 rice DREB1/CBF-type transcription factors involved in coldresponsive gene expression in transgenic rice. Plant Cell Physiol. 2006; 47:141–153. https://doi.org/10.1093/pcp/pci230 | | | 12. Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K.The dehydration- inducible Rd17 (Cor47) gene and its promote region in Arabidopsis thaliana. Plant Physiol. 1997; 115:1287–1289. | | | 13. Kasuga M, Miura S, Shinozaki K and Yamaguchi-Shinozaki K .A combination of the Arabidopsis DREB1A gene and stressinducible rd29A promoter improved drought- and lowtemperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 2004; 45: 346-350. https://doi.org/10.1093/pcp/pch037 | | | 14. Li Y, Su X, Zhang B, Huang Q, Zhang X, Huang R. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiol. 2009; 29:273–279. https://doi.org/10.1093/treephys/tpn025 | | | 15. Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX. Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta. 2007; 226:827–838. https://doi.org/10.1007/s00425-007-0529-8 | | | 16. Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006; 140:411–432 https://doi.org/10.1104/pp.105.073783 | | | 17. Navarro M, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulières C. Complementary regulation of four eucalyptus CBF genes under various cold conditions. J Exp Bot. 2009; 60:2713–2724 https://doi.org/10.1093/jxb/erp129 | | | 18. Qin F, Sakuma Y, Li J, Liu Q, Liu YQ, Shinozaki K,Yamaguchi Shinozaki K. 2004. | | | 19. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant and Cell Physiology; 45: 1042–1052. https://doi.org/10.1093/pcp/pch118 | | | 20. Qin QL, Liu JG, Zhang Z, Peng RH, Xiong AS. Isolation, optimization, and functional analysis of the cDNA encoding transcription factor RdreB1 in Oryza sativa L. Mol Breed. 2007; 19:329–340 https://doi.org/10.1007/s11032-006-9065-7 | | | 21. Seki M, Narusaka M, Abe H, Kasuga M. Monitoring the expression `pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 2001; 13: 61-72. https://doi.org/10.1105/tpc.13.1.61 | | | 22. Shen YG, Zhang WK, He SJ, Zhang JS, Liu Q, Chen SY. An EREBP/AP2 type protein in Triticum aestivum was a DREbinding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics. 2003; 106; 923–930. https://doi.org/10.1007/s00122-002-1131-x | | | 23. Tardi eu F. Plant tolerance to water deficit: physical limits and possibilities for progress. Comptes Rendus Geoscience. 2005;337; 57–67. https://doi.org/10.1016/j.crte.2004.09.015 | | | 24. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology. 2006; 17: 113–122 https://doi.org/10.1016/j.copbio.2006.02.002 | | | 25. Vij S, Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnology Journal. 2007.; 5: 361–380. https://doi.org/10.1111/j.1467-7652.2007.00239.x | | | 26. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology. 2005; 16: 123–132. https://doi.org/10.1016/j.copbio.2005.02.001 | | | 27. Volkov RA, Panchuk II and Schoffl F. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 2003; 54: 2343-2349. https://doi.org/10.1093/jxb/erg244 | | | 28. Wang H, Datla R, Georges F, Loewen M, Cutler AJ. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol. 1995; 28:605–617 https://doi.org/10.1007/BF00021187 | | | 29. Xu ZS, Chen M, Li LC, Ma YZ. Functions of the ERF transcription factor family in plants. Botany. 2008;86:969–977 https://doi.org/10.1139/B08-041 | | | 30. Zhuang J, Cai B, Peng RH, Zhu B, Jin XF, Xue Y, Gao F, Fu XY, Tian YS, Zhao W, Qiao YS, Zhang Z, Xiong AS, Yao QH. Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun. 2008; 371:468–474. https://doi.org/10.1016/j.bbrc.2008.04.087 | | | 31. Zhuang J, Peng RH, Cheng ZM, Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu XY, Jin XF, Chen JM, Qiao YS, Xiong AS, Yao QH. Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera. Sci Hortic. 2009; 123:73–81 https://doi.org/10.1016/j.scienta.2009.08.002 | | |
|