Research Article | Volume: 6, Issue: 3, May-June, 2018

Coleoptilar node - A season-independent explant source for in vitro culture in maize (Zea mays L.)

Pavan Kumar Gudlavalleti Sreenu Pagidoju Sridevi Muppala Reddy Malireddy Kodandarami Sateesh Kumar Puligandla   

Open Access   

Published:  Apr 05, 2018

DOI: 10.7324/JABB.2018.60304

In vitro plant regeneration is preliminary requisite in the process of obtaining transgenic plants. Somatic embryogenesis is the most frequently used method of in vitro plant regeneration in maize. In this study, a reliable and reproducible maize regeneration method has been standardized using mature embryos. Inspite, the immature embryos are most suitable explants for somatic embryogenesis, obtaining these explants continuously is a laborious and tedious process, especially in summer. Hence, alternate explants of maize for in vitro regeneration have been chosen from different parts of embryonic axis. This study provides an evaluation of inbred lines and effect of hormonal combinations on total and embryogenic callus induction, their growth rate, and plantlet regeneration. Coleoptilar nodal explants from four inbred lines were cultured on different concentrations and combinations of 2,4-dichloro phenoxyacetic acid (2,4-D) along with kinetin (Kn). Explants grown on Murashige and Skoog medium supplemented with 2,4-D and Kn at a concentration of 5 and 1 mg/L, respectively, were found to be the best one for yielding a high frequency of embryogenic callus. Inbred line, NM81A was found to be the best one for in vitro culture among the four lines used. Combination of 6-benzylaminopurine and Kn at a concentration of 1 mg/L each promoted the highest frequency of shoot induction.

Keyword:     Coleoptilar node In vitro regeneration Growth rate Zea mays L.


Gudlavalleti PK, Pagidoju S, Muppala S, Kodandarami RM, Puligandla SK. Coleoptilar node - A season-independent explant source for in vitro culture in maize (Zea mays L.). J App Biol Biotech. 2018;6(3):20-28. DOI: 10.7324/JABB.2018.60304

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Green CE, Phillips RL. Plant regeneration from tissue culture of maize. Crop Sci 1975;15:417-21.

2. Ting YC, Yu M, Zheng WZ. Improved anther culture of maize. Plant Sci Lett 1981;23:139-45.

3. Barloy D, Beckert M. Improvement of regeneration ability of androgenetic embryos by early anther transfer in maize plant. Plant Cell Tissue Organ Cult 1993;33:45-50.

4. Ismaili A, Mohammadi PP. Effect of genotype, induction medium, carbohydrate source, and polyethylene glycol on embryogenesis in maize (Zea mays L.) anther culture. Acta Physiol Plant 2016;38:1-8.

5. Suprasanna P, Rao KV, Reddy GM. Plantlet regeneration from glume calli of maize (Zea mays L.). Theor Appl Genet 1986;72:120-2.

6. Pareddy DR, Petolino JF. Somatic embryogenesis and plant regeneration from immature inflorescences of several elite inbred of maize. Plant Sci 1990;67:211-9.

7. Rhodes CA, Green CE, Phillips RL. Factors affecting tissue culture initiation from maize tassels. Plant Sci 1986;46:225-32.

8. Songstad DD, Peterson WL, Armstrong CL. Establishment of friable embryogenic (Type II) callus from immature tassels of Zea mays L. Am J Bot 1992;79:761-4.

9. Grando MF, Varnier ML, Silva MR, Emydio BM, Pereira LR, Suzin M. Immature tassels as alternative explants in somatic embryogenesis and plant regeneration in south Brazilian maize genotypes. Acta Sci Agron 2013;35:39-47.

10. Conger BV, Novak FJ, Afza R, Erdelsky K. Somatic embryogenesis from cultured leaf segments of Zea mays. Plant Cell Rep 1987;6:345-7.

11. Ray DS, Ghosh PD. Somatic embryogenesis and plant regeneration from cultured leaf explants of Zea mays L. Ann Bot 1990;66:497-500.

12. Ahmadabadi M, Ruf S, Bock R. A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Res 2007;16:437-48.

13. Morocz C, Donn G, Nemeth J, Dudits D. An improved system to obtain fertile regenerates via maize protoplast isolated from highly embryogenic suspension culture. Theor Appl Genet 1990;80:721-6.

14. Santos MA, Torne JM, Blanco JL. Methods of obtaining maize totipotent tissues. I. Seedling segments culture. Plant Sci Lett 1984;33:309-15.

15. Huang XQ, Wei ZM. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea Mays L.). Plant Cell Rep 2004;22:793-800.

16. Pathi KM, Tula S, Huda KM, Srivastava VK, Tuteja N. An efficient and rapid regeneration via multiple shoot induction from mature seed derived embryogenic and organogenic callus of Indian maize (Zea mays L.). Plant Signal Behav 2013;8:25891.

17. Zhong H, Srinivasan C, Sticklen MB. In-vitro morphogenesis of corn (Zea mays L.): II. Differentiation of ear and tassel clusters from cultured shoot apices and immature inflorescences. Planta 1992;187:490-7.

18. O'Connor-Sanchez A, Cabrera-Ponce JL, Valdez-Melara M, Tellez-Rodriguez P, Pons-Hernandez JL, Herrera-Estrella L. Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep 2002;21:302-12.

19. Sairam RV, Parani M, Franklin G, Lifeng Z, Smith B, MacDougall J, et al. Shoot meristem: An ideal explant for Zea mays L. transformation. Genome 2003;46:323-9.

20. Zhang S, Williams-Carrier R, Lemaux P. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 2002;21:263-70.

21. Al-Abed D, Rudrabhatla S, Talla R, Goldman S. Split-seed: A new tool for maize researchers. Planta 2006;223:1355-60.

22. Mushke R, Yarra R, Bulle M. Efficient in vitro direct shoot organogenesis from seedling derived split node explants of maize (Zea mays L.). J Genet Eng Biotechnol 2016;14:49-53.

23. Duncan DR, Williams ME, Zehr BE, Widholm JM. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 1985;165:322-32.

24. Bohorova NE, Luna B, Brito RM, Huerta LD, Hoisington DA. Regeneration potential of tropical, subtropical, mid altitude and highland maize inbred. Maydica 1995;40:275-81.

25. Aguado-Santacruz GA, Garcia-Moya E, Aguilar-Acuna JL, Moreno-Gomez B, Solís-Moya E, Preciado-Ortiz ER, et al. In vitro plant regeneration from quality protein maize. In vitro Cell Dev Biol Plant 2007;43:215-24.

26. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 1996;14:745-50.

27. Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nat Protoc 2007;2:1614-21.

28. Binott JJ, Songa JM, Ininda J, Njagi EM, Machuka J. Plant regeneration from immature embryos of Kenyan maize inbred lines and their respective single cross hybrids through somatic embryogenesis. Afr J Biotechnol 2008;7:981-7.

29. Manivannan A, Kaul J, Singode A, Dass S. Callus induction and regeneration of elite Indian maize inbreds. Afr J Biotechnol 2010;9:746-52.

30. Rakshit S, Rashid Z, Sekhar JC, Fatma T, Dass S. Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Organ Cult 2010;100:31-7.

31. Rueb S, Leneman M, Schilperoort RA, Hensgens LA. Efficient plant regeneration through somatic embryogenesis from callus induced on mature rice embryos (Oryza sativa L.). Plant Cell Tissue Organ Cult 1994;36:259-64.

32. Ozgen M, Turet M, Altinok S, Sancak C. Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Rep 1998;18:331-5.

33. Ward KA, Jordan MC. Callus formation and plant regeneration from immature and mature embryos of rye (Secale cereale L.). In Vitro Cell Dev Biol Plant 2001;37:361-8.

34. Wang AS. Callus induction and plant regeneration from maize mature embryos. Plant Cell Rep 1987;6:360-2.

35. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962;15:473-97.

36. Snedecor GW, Cochran WG. Statistical Methods. Ames, Iowa, USA, New Delhi: The Iowa State University Press, Oxford and IBH Publishing Co. Pvt. Ltd.; 1968.

37. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, et al. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 2002;129:13-22.

38. Bhaskaran S, Smith RH. Regeneration in cereal tissue culture: A review. Crop Sci 1990;30:28-37.

39. Armstrong CL, Green CE. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 1985;164:207-14.

40. Carvalho CH, Bohorova NE, Bordallo PN, Abreu LL, Valicente FH, Bressan W, et al. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 1997;17:73-6.

41. Chaudhury A, Qu R. Somatic embryogenesis and plant regeneration of turf-type Bermuda grass: Effect of 6-benzyladenine in callus induction medium. Plant Cell Tissue Organ Cult 2000;60:113-20.

42. Lu C, Vasil IK, Ozias-Akins P. Somatic embryogenesis in Zea mays L. Theor Appl Genet 1982;62:109-12.

43. Lu C, Vasil V, Vasil IK. Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor Appl Genet 1983;66:285-9.

44. Sreenu P, Kumar PS, Reddy MK, Sailaja D, Kumar GP. Resourceful and high efficiency Agrobacterium mediated transformation of maize (Zea mays L.) using coleoptilar nodal explants. Int J Curr Res Biosci Plant Biol 2016;3:1-9.

Article Metrics
506 Views 146 Downloads 652 Total



Related Search

By author names