Research Article | Volume: 6, Issue: 1, Jan-Feb, 2018

Application of Mentha suaveolens essential oil as an antimicrobial agent in fresh turkey sausages

Abdelaziz Ed-Dra Fouzia Rhazi Filai Mohamed Bou-Idra Badr Zekkori Aziz Bouymajane Najia Moukrad Faouzia Benhallam Amar Bentayeb   

Open Access   

Published:  Jan 17, 2018

DOI: 10.7324/JABB.2018.60102
Abstract

The aim of this study is to evaluate the antimicrobial effect of Mentha suaveolens essential oil against pathogenic bacteria in fresh turkey sausages. The essential oil was extracted by hydrodistillation. The antibacterial activity was carried out by agar diffusion and microplates methods against Escherichia coli, Salmonella, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Streptococcus faecalis. The antioxidant activity was carried out by ferric reducing antioxidant power and free radical scavenging activities against 2,2-diphenyl-1-picrylhydrazyl. The antimicrobial effect on sausages was conducted by the enumeration of S. aureus and E. coli during the storage period of fresh sausages manufactured with different concentrations of essential oil. The results showed that the essential oil of M. suaveolens has an antibacterial effect against Gram-negative and Gram-positive bacteria in addition to its antioxidant activity (EC50 = 3.95 ± 0.03 mg/mL and IC50 = 3.11 ± 0.02 mg/mL). Moreover, the addition of essential oil to fresh sausages has a significant effect against the tested pathogenic bacteria. The present data clearly demonstrate that the essential oil of M. suaveolens has a remarkable antimicrobial and antioxidant activities and can be used as a food additive to extend the shelf life of food products.


Keyword:     Mentha suaveolens Essential oil Antibacterial activity Food preservation Fresh sausage


Citation:

Ed-dra A, Rhazi Filai F, Bou-Idra M, Zekkori B, Bouymajane A, Moukrad A, Bentayed A. Application of Mentha suaveolens essential oil as an antimicrobial agent in fresh turkey sausages. J App Biol Biotech. 2018;6(1):7-12. DOI: 10.7324/JABB.2018.60102

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Ed-dra A, Rhazi Filali F, El Allaoui A, Aboulkacem A. Factors influencing the bacteriological quality of sausages sold in Meknes city, Morocco. International Food Research Journal. 2017; 24(3): 933-938.

2. Hwang CA, Porto-Fett AC, Juneja VK, Ingham SC, Ingham BH, Luchansky JB. Modeling the survival of Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella Typhimurium during fermentation, drying, and storage of soudjouk-style fermented sausage. International Journal of Food Microbiology. 2009; 129(3): 244-252.
https://doi.org/10.1016/j.ijfoodmicro.2008.12.003

3. Campbell JA, Dickson JS, Cordray JC, Olson DG, Mendonca AF, Prusa KJ. Survival of Methicillin-Resistant Staphylococcus aureus During Thermal Processing of Frankfurters, Summer Sausage, and Ham. Foodborne Pathogens and Disease. 2014; 11(1): 50-54.
https://doi.org/10.1089/fpd.2013.1571

4. Ed-Dra A, Rhazi Filali F, Karraouan B, El Allaoui A, Aboulkacem A, Bouchrif B. Prevalence, molecular and antimicrobial resistance of Salmonella isolated from sausages in Meknes, Morocco. Microbial Pathogenesis. 2017; 105: 340-345.
https://doi.org/10.1016/j.micpath.2017.02.042

5. Argudin MA, Mendoza MC, Rodicio MR. Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel). 2010; 2: 1751–1773.
https://doi.org/10.3390/toxins2071751

6. Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH, White PL, Wymore K, Gierke RE, Mahon BE, Griffin PM. Increased recognition of non-O157 Shiga toxin–producing Escherichia coli infections in the United States during 2000–2010: Epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathogens and Disease. 2013; 10(5): 453-460.
https://doi.org/10.1089/fpd.2012.1401

7. Busatta C, Vidal RS, Popiolski AS, Mossi AJ, Dariva C, Rodrigues MRA, Corazza FC, Corazza ML, Vladimir Oliveira J, Cansian RL. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage. Food Microbiology. 2008. 25(1): 207-211.
https://doi.org/10.1016/j.fm.2007.07.003

8. Tajkarimi MM, Ibrahim SA, Cliver DO. Antimicrobial herb and spice compounds in food. Food Control. 2010; 21(9): 1199-1218.
https://doi.org/10.1016/j.foodcont.2010.02.003

9. Barbosa LN, Probst IS, Andrade BFMT, Alves FCB, Albano M, Rall VLM, Júnior AF. Essential oils from herbs against foodborne pathogens in chicken sausage. Journal of Oleo Science. 2015; 64(1): 117-124.
https://doi.org/10.5650/jos.ess14163

10. Hmammouchi M. Les Plantes Médicinales et Aromatiques Marocaines. Utilisations, Biologie, Ecologie, Chimie, Pharmacologie, Toxicologie et Lexiques, Rabat: Fédala Press; 1999, p.1-177.

11. Jamila F, Mostafa E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. Journal of Ethnopharmacology. 2014; 154(1): 76-87.
https://doi.org/10.1016/j.jep.2014.03.016

12. El-Kashoury ESA, El-Askary HI, Kandil ZA, Taher EE, Salem MA. Molluscicidal and Mosquitocidal Activities of the Essential Oil of Mentha suaveolens Ehrh. Cultivated in Egypt. Journal of Essential Oil Bearing Plants. 2015; 18(2): 436-443.
https://doi.org/10.1080/0972060X.2013.793981

13. Sutour S, Bradesi P, Casanova J, Tomi F. Composition and chemical variability of Mentha suaveolens ssp. suaveolens and M. suaveolens ssp. insularis from Corsica. Chemistry and Biodiversity. 2010; 7(4): 1002-1008.
https://doi.org/10.1002/cbdv.200900365

14. Bellakhdar J. 1996. Medicinal plants in North Africa and basic care, Hand book of Modern Herbal Medicine, Casablanca: Le Fennec Press; 1996, p. 1-98.

15. Moreno L, Bello R, Primo‐Yúfera E, Esplugues J. Pharmacological properties of the methanol extract from Mentha suaveolens Ehrh. Phytotherapy Research. 2002; 16 (S1): 10-13.
https://doi.org/10.1002/ptr.744

16. Karousou R, Balta M, Hanlidou E, Kokkini S. "Mints", smells and traditional uses in Thessaloniki (Greece) and other Mediterranean countries. Journal of Ethnopharmacology. 2007; 109(2): 248-257.
https://doi.org/10.1016/j.jep.2006.07.022

17. Božović M, Pirolli A, Ragno R. Mentha suaveolens Ehrh. (Lamiaceae) essential oil and its main constituent piperitenone oxide: Biological Activities and Chemistry. Molecules. 2015; 20(5): 8605-8633.
https://doi.org/10.3390/molecules20058605

18. Brada M, Bezzina M, Marlier M, Carlier A, Lognay G. Variability of the chemical composition of Mentha rotundifolia from Northern Algeria. Biotechnologie, Agronomie, Société et Environnement. 2007; 11(1): 3-7.

19. Abbaszadeh B, Valadabadi SA, Farahani HA, darvishi HH. Studying of essential oil variations in leaves of Mentha species. African Journal of Plant Science. 2009; 3(10): 217-221.

20. Kumar P, Mishra S, Malik A, Satya S. Insecticidal properties of Mentha species: a review. Industrial Crops and Products. 2011; 34(1): 802-817.
https://doi.org/10.1016/j.indcrop.2011.02.019

21. Oumzil H, Ghoulami S, Rhajaoui M, Ilidrissi A, Fkih‐Tetouani S, Faid M, Benjouad A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytotherapy Research. 2002; 16(8): 727-731.
https://doi.org/10.1002/ptr.1045

22. El-Kashoury ESA, El-Askary HI, Kandil ZA, Salem MA, Sleem AA. Chemical composition and biological activities of the essential oil of Mentha suaveolens Ehrh. Zeitschrift für Naturforschung C. 2012; 67(11-12): 571-579.
https://doi.org/10.5560/ZNC.2012.67c0571

23. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 24th Informational Supplement. CLSI document M100-S24. Clinical and Laboratory Standards Institute, Wayne, pa. 2014; pp.50-108.

24. Ponce AG, Fritz R, Del Valle C, Roura SI. Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT- Food Science and Technology. 2003; 36(7): 679-684.
https://doi.org/10.1016/S0023-6438(03)00088-4

25. Eloff JN. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta medica. 1998; 64(8): 711-713.
https://doi.org/10.1055/s-2006-957563

26. Chebaibi A, Marouf Z, Rhazi-Filali F, Fahim M, Ed-Dra A. Evaluation of antimicrobial activity of essential oils from seven Moroccan medicinal plants. Phytothérapie. 2016; 14(6): 355-362.
https://doi.org/10.1007/s10298-015-0996-1

27. Jahanpanahi M, Sani AM. Antimicrobial effect of nanofluid including Zinc oxide (ZnO) nanoparticles and Mentha pulegium essential oil. Journal of Applied Biology and Biotechnology. 2016; 4(4): 085-089.

28. Dorman HJD, Peltoketo A, Hiltunen R, Tikkanen MJ. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry. 2003; 83(2): 255-262.
https://doi.org/10.1016/S0308-8146(03)00088-8

29. Kubola J, Siriamornpun S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chemistry. 2008; 110(4): 881-890.
https://doi.org/10.1016/j.foodchem.2008.02.076

30. Abdallah EM, Elsharkawy EM, Ed-dra A. Biological activities of methanolic leaf extract of Ziziphus mauritiana. Bioscience Biotechnology Research Communications. 2016; 9(4): 605-614.

31. Benkerroum N, Daoudi A, Kamal M. Behaviour of Listeria monocytogenes in raw sausages (merguez) in presence of a bacteriocin-producing lactococcal strain as a protective culture. Meat Science. 2003; 63(4): 479-484.
https://doi.org/10.1016/S0309-1740(02)00107-9

32. Levison ME. Pharmacodynamics of antimicrobial drugs. Infectious Disease Clinics of North America. 2004; 18(3): 451-465.
https://doi.org/10.1016/j.idc.2004.04.012

33. Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry. 2003; 10: 813–829.
https://doi.org/10.2174/0929867033457719

34. Walker JF, Santos PDS, Schmidt CA, Bittencourt TCCD, Guimarães AG. Antimicrobial Activity of Marjoram (Origanum Majorana) Essential Oil Against the Multidrug‐Resistant Salmonella Enterica Serovar Schwarzengrund Inoculated in Vegetables from Organic Farming. Journal of Food Safety. 2016; 36 (4): 489-496.
https://doi.org/10.1111/jfs.12266

35. Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, Totte J, Pieters L, Vlietinck AJ. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of Ethnopharmacology. 2002; 79(2): 213-220.
https://doi.org/10.1016/S0378-8741(01)00384-1

36. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology. 2004; 94(3): 223-253.
https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

37. Couic-Marinier F, Lobstein A. Chemical composition of essential oils. Actualités Pharmaceutiques. 2013; 52(525): 22-25.
https://doi.org/10.1016/j.actpha.2013.02.006

38. Wybranowski T, Ziomkowska B, Kruszewski S. Antioxidant properties of flavonoids and honeys studied by optical spectroscopy methods. Medical and Biological Sciences. 2014; 27(4): 53-58.

39. Hulin V, Mathot AG, Mafart P, Dufosse L. Antimicrobial properties of essential oils and flavour compounds. Sciences des Aliments. 1998; 18(6): 563-582.

40. Bozin B, Mimica-Dukic N, Simin N, Anackov G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. Journal of Agricultural and Food Chemistry. 2006; 54(5): 1822-1828.
https://doi.org/10.1021/jf051922u

41. Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology. 1999; 86(6): 985-990.
https://doi.org/10.1046/j.1365-2672.1999.00780.x

42. Bouchra C, Achouri M, Hassani LI, Hmamouchi M. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. Journal of Ethnopharmacology. 2003; 89(1): 165-169.
https://doi.org/10.1016/S0378-8741(03)00275-7

43. Bandyopadhyay S, Lodh C, Rahaman H, Bhattacharya D, Bera AK, Ahmed FA, Mahanti A, Samanta I, Mondal DK, Bandyopadhyay S, Sarkar S, Dutta TK, Maity S, Paul V, Ghosh MK, Sarkar M, Baruah KK. Characterization of Shiga toxin producing (STEC) and enteropathogenic Escherichia coli (EPEC) in raw yak (Poephagus grunniens) milk and milk products. Research in Veterinary Science. 2012; 93: 604–610.
https://doi.org/10.1016/j.rvsc.2011.12.011

44. AL-Zogibi OG, Mohamed MI, Hessain AM, EL-Jakee JK, Kabli SA. Molecular and serotyping characterization of shiga toxogenic Escherichia coli associated with food collected from Saudi Arabia. Saudi Journal of Biological Sciences. 2015; 22(4): 438-442.
https://doi.org/10.1016/j.sjbs.2015.02.019

45. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Research International. 2014; 2014:827965.
https://doi.org/10.1155/2014/827965

46. Abdalrahman LS, Stanley A, Wells H, Fakhr MK. Isolation, virulence, and antimicrobial resistance of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA) strains from Oklahoma retail poultry meats. International Journal of Environmental Research and Public Health. 2015; 12(6): 6148-6161.
https://doi.org/10.3390/ijerph120606148

Article Metrics

115 Absract views 121 PDF Downloads 236 Total views

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles

Chemical composition, antioxidant and antimicrobial activities of the essential oil of Vetiveria nigritana (Benth.) Stapf roots from Burkina Faso

Zenabou Semde, Jean Koudou, Cheikna Zongo, Gilles Figueredo, Marius K. Somda, Leguet Ganou, Alfred S. Traore

Insecticidal effect of four plant essential oils against two aphid species under laboratory conditions

Akram Saleh Alghamdi

Antimicrobial effects of edible nano-composite based on bean pod shell gum, nano-TiO2, and Mentha pulegium essential oil

Mozhgan Nasiri, Ali Mohamadi Sani, Vahid Hakimzadeh, Mostafa Shahidi

Cymbopogon giganteus Chiov. essential oil: Direct effects or activity in combination with antibiotics against multi-drug resistant bacteria

Habib Toukourou , Hope Sounouvou, Lucy Catteau, Fatiou Toukourou, Françoise Van Bambeke, Fernand Gbaguidi, Joëlle Quetin-Leclercq

Efficacy of commercial botanical pure essential oils of garlic (Allium sativum) and anise (Pimpinella anisum) against larvae of the mosquito Aedes aegypti

Sedthapong Laojun, Pongmada Damapong, Peerada Damapong, Wallapa Wassanasompong, Nantana Suwandittakul, Thavatchai Kamoltham, Tanawat Chaiphongpachara

Lemongrass oil disrupts the biofilm of Candida albicans MTCC 1637T on soft denture reliners at lower concentrations compared to thyme and tea tree oils

Aishwarya Rajendra Patil, Ravi M.B., Raghavendra Swamy K.N., Ann Catherine Archer, Sowmya S, Sanya Hazel Soans, Raghu Ram Achar

Inducing the growth and flowering of caraway (Carum carvi L.) plant

Hanan M. H. Ali, Dalia Abdel Halim M. Sallam

Enhancing antibacterial properties of bacteriocins using combination therapy

Poonam Sharma, Meena Yadav

Antimycobacterial and antibiofilm activity of garlic essential oil using vapor phase techniques

Ashirbad Sarangi, Bhabani Shankar Das, Sunil Swick Rout, Ambika Sahoo, Sidhartha Giri, Debapriya Bhattacharya

In vitro Antimicrobial Comparison of Taif and Egyptian Pomegranate Peels and Seeds Extracts

Ahmed Gaber , Mohamed M. Hassan , El-Dessoky S. Dessoky , Attia O. Attia

Potential use as a bio-preservative from lupin protein hydrolysate generated by alcalase in food system

Ali Osman, Ghada M. El-Araby, Hefnawy Taha

Antimicrobial Activity Screening of Marine Bacteria Isolated from the Machilipatnam Sea Coast of Andhra Pradesh, India

K. Bala Chandra, V. Umamaheswara Rao, Subhaswaraj Pattnaik, Siddhardha Busi

Antimicrobial effect of nanofluid including Zinc oxide (ZnO) nanoparticles and Mentha pulegium essential oil

Mona Jahanpanahi, Ali Mohamadi Sani

Inducible Antimicrobial Compounds (Halal) Production in Honey Bee Larvae (Apis mellifera) from Rumaida, Taif by injecting of various dead Microorganisms extracts

Abd-ElAziem Farouk, N. Thoufeek Ahamed, Othman AlZahrani, Akram Alghamdi, AbdulAziz Bahobail

Bioactive potential of Diadema sp. from the South East Coast of Mauritius

Lisa Karen Yee Chin Youne Ah Shee Tee, Daneshwar Puchooa, Vishwakalyan Bhoyroo

Effect of growth hormones in induction of callus, antioxidants, and antibacterial activity in Nerium odorum

Avinash Prakasha, S Umesha

Biosynthesis, characterization and antibacterial activity of silver nanoparticles from Aspergillus awamori

Vishwanatha T, Keshavamurthy M, Mallappa M, Murugendrappa MV , Nadaf YF, Siddalingeshwara KG, Dhulappa A

Antibacterial activity of an endophytic fungus Lasiodiplodia pseudotheobromae IBRL OS-64 residing in leaves of a medicinal herb, Ocimum sanctum Linn.

Taufiq M.M.J., Darah I.

Antibacterial activity of leaf extract of Chromolaena odorata and the effect of its combination with some conventional antibiotics on Pseudomonas aeruginosa isolated from wounds

P. Odinakachukwu Omeke, J. Okechukwu Obi, N. A. Ibuchukwu Orabueze , Anthony Chibuogwu Ike

Characterization of extracellular polymeric substance producing isolates from wastewaters and their antibacterial prospective

Anita Rani Santal,Nater Pal Singh,Tapan Kumar Singha

Application of guava leaves extract on jelly candy to inhibit Streptococcus mutans

Yuniwaty Halim, Raphael Dimas Tri Nugroho, Hardoko,, Ratna Handayani