Research Article | Volume: 5, Issue: 5, Sep-Oct, 2017

Non-coding DNA – a brief review

Anandakumar Shanmugam Arumugam Nagarajan Shanmughavel Pramanayagam   

Open Access   

Published:  Oct 30, 2017

DOI: 10.7324/JABB.2017.50507
Abstract

In addition to the coding segments, genomes of all organisms are made of several highly conserved non–protein coding regions. Biochemical analysis by isolating non-coding regions from cells, tissues or whole organism studies are powerful tools for their identification. In lieu of this, identifying and annotating these regions using comparative and functional genomics approaches should be a high priority. Understanding and identifying their location and what these segments are composed of would pave way for functional annotation. Large scale functional genomics approaches help to identify novel genes and allow to hypothesize its in vivo function systematically in turn aid in annotating the conserved regions obtained from comparative genomics at the sequence level. In this review, we survey all non- coding regions, their importance and their functional roles newly discovered.


Keyword:     Non-coding regionscomparative genomicsfunctional genomicsfunctional annotationin vivo.


Citation:

Shanmugam A, Nagarajan A, Pramanayagam S. Non-coding DNA – a brief review. J App Biol Biotech. 2017; 5 (05): 42-47.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Volpe P., Eremenko T., Preferential methylation of regulatory gene sequences in HeLa cells. FEBS Lett. 1974; 44: 121-126.

2. Breathnach R., Mandel J.L. and Chambon P. Ovalbumin gene is split in chicken DNA. Nature. 1977; 270: 314-319.

3. Berget S.M., Moore C., Sharp P.A., Spliced segments at the 5’ terminus of Adenovirus 2 late mRNA. Proc. Nat. Acad. Sci. USA, 1977; 74: 3171-3175.

4. Chow L.T.R., Gelinas R.E., Broker T.R., Roberts R.J. An amazing sequence arrangement at the 5’ ends of Adenovirus 2 messenger RNA. Cell. 1977; 12: 1-8.

5. Cacciamani T., Virgili S., Centurelli M., Bertoli E., Eremenko T. and Volpe P. Specific methylation of the CpG-rich domains in the promoter of the human tissue transglutaminase gene. Gene, 2002; 297: 103-112.

6. Liang F., Holt I., Pertea G., Karamycheva S., Salzberg S. L., Quackenbush J., Gene index analysis of the human genome estimates approximately 120,000 genes. Nat Genet. 2000; 25:239-40.

7. Ewing B., Green P., Analysis of expressed sequence tags indicates 35,000 human genes. Nat.Genet., 2000; 25: 232-234.

8. Roest Crollius H., Jaillon O., Dasilva C., Bouneau L., Fischer C., Fizames C., et al., Estimate of human gene number provided by genomewide analysis using Tetraodon nigroviridis DNA sequence. Nature Genetics. 2000; 25: 235-238.

9. Venter JC., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., et al., The sequence of the human genome. Science. 2001; 29: 1304-1351.

10. Alexander R.P., Fang G., Rozowsky J., Snyder M., Gerstein M.B., Annotating non- coding regions of the genome. Nature Reviews Genetics., 2010; 11: 559-71.

11. Feng Jun, Li Guang, Wang Yi-Quan. Research progress of conserved non-coding elements in metazoan. HEREDITAS., 2013; 35: 35-44.

12. Eddy S.R., Computational genomics of noncoding RNA genes. Cell. 2002; 109: 137-140.

13. Gottesman S., Stealth regulation: biological circuits with small RNA switches. Genes Dev. 2002; 16: 2829-2842.

14. Mattick J.S., RNA regulation: a new genetics? Nat Rev Genet. 2004; 5: 316-323.

15. Britten R.J., Davidson E.H., Gene regulation for higher cells: a theory. Science. 1969; 165: 349-357

16. Britten R.J., Davidson E.H., Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol. 1971; 46: 111-138.

17. Goldstein L., Trescott O.H., Characterization of RNAs that do and do not migrate between cytoplasm and nucleus. Proc Natl Acad Sci USA. 1970; 67: 1367-1374.

18. Calvet J.P., Pederson T., Secondary structure of heterogeneous nuclear RNA: two classes of doublestranded RNA in native ribonucleoprotein. Proc Natl Acad Sci USA. 1977; 74: 3705-3709

19. Frith M.C., Pheasant M., Mattick J.S., The amazing complexity of the human transcriptome. Eur J Hum Genet., 2005; 13: 894-897.

20. Greally J.M., Genomics: Encyclopaedia of humble DNA. Nature., 2007; 447: 782-783.

21. Anandakumar S., Suda parimala R., Shanmughavel P., Functional annotation of introns in mitochondrial genome - a brief review. Mitochondrial DNA. 2014;20: 1-4.

22. Ernst J et al., Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473: 43-49.

23. Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T., Identification of Novel Genes Coding for Small Expressed RNAs Science., 2001; 294: 853-858.

24. Lee R.C., Ambros V., An Extensive Class of Small RNAs in Caenorhabditis elegans. Science., 2001; 294: 862-864.

25. Grosshans H., Slack F.J., Micro-RNAs: small is plentiful Cell Biol., 2002; 156: 17-21.

26. Wassarman K.M., Zhang A., Storz G., Small RNAs in Escherichia coli. Trends Microbiol., 1999; 7: 37-45.

27. Altuvia S., Wagner E. G. H., Switching on and off with RNA. Proc. Natl. Acad. Sci. U.S.A., 2000; 97: 9824-9826.

28. Erdmann V.A., Szymanski M., Hochberg A., de Groot N., Barciszewski J., Non- coding , mRNA-like RNAs database Y2K. Nucleic Acids Res., 2000; 28: 197-200.

29. Avner P., Heard E., Making sense (and antisense) of the X inactivation center. Nature Rev. Genet., 2001; 98: 10025-10027.

30. Storz G., An Expanding Universe of Noncoding RNAs Science., 2002; 296:1260-3.

31. Will C.L., Lu¬hrmann R., Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol., 2001; 13: 290-301.

32. Kable M.L., Heidmann S., Stuart K.D., Sequence bias in edited kinetoplastid RNAs. Trends Biochem. Sci., 2000; 6: 1492-1497.

33. Simpson L., Thiemann O. H., Savill N.J., Alfonzo J. D., Maslov D.A., Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. USA., 2000; 97: 6986-6993.

34. Nishikura K.A., Short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell., 2001; 107: 415-8.

35. Chen X., Quinn A.M, Wolin S.L., Ro ribonucleoproteins contribute to the resistance of Deinococcus radiodurans to ultraviolet irradiation. Genes Dev., 2000; 14: 777-782.

36. FitzGerald P.C., Shlyakhtenko A., Mir A.A., Vinson C., Clustering of DNA sequences in human promoters. Genome Res., 2004; 14: 1-13.

37. Xie X., Lu J., Kullbokas E.J., Golub T., Mootha V., Lindblad-Toh K., Lander E.S.,et al., Systematics discovery of regulatory motifs in human promoters and 3_ UTRs by comparison of several mammals. Nature., 2005; 434: 338-345.

38. Boris Lenhard, Albin Sandelin, Luis Mendoza, Pär Engström, Niclas Jareborg and Wyeth W Wasserman Identification of conserved regulatory elements by comparative genome analysis. Journal of Biology. 2003; 2-13.

39. Wei Shi, Wanlei Zhou and Dakang Xu. Identifying cis-regulatory elements by statistical analysis and phylogenetic footprinting and analyzing their coexistence and related gene ontology. Physiol Genomics. 2007; 31: 374-384.

40. Platt T., Transcription termination and the regulation of gene expression. Annu Rev Biochem, 1986; 55: 339-72.

41. Hentze M.W., Kühn L.C., Molecular control of vertebrate iron metabolism: mRNA- based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. U.S.A., 1996; 93: 8175-82.

42. Hirotsune S., Yoshida N., Chen A., Garrett L., Sugiyama F., et al., An Expressed Pseudogene Regulates the messenger-RNA Stability of Its Homologous Coding Gene. Nature. 2003; 426: 91-6.

43. Text Book of Evolutionary analysis, (4th ed.)Columbia: Pearson Prentice Hall, 2007.p. 235-48.

44. Corrado C., Transcriptional regulation of telomeric non-coding RNA Implications on telomere biology, replicative senescence and cancer. RNA Biology. 2010; 7: 18-22.

45. Denchi E.L., de Lange T., Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007; 448: 1068-71.

46. Wu L., Multani A.S., He H., Cosme-Blanco W., Deng Y., Deng J.M., et al., Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell. 2006; 126:49-53.

47. Bae N.S., Baumann P.A., RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell. 2007; 26: 323-34.

48. Hockemeyer D., Daniels J.P., Takai H., de Lange T. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell. 2006; 12: 63-77.

49. Churikov D., Price C.M., Pot1 and cell cycle progression cooperate in telomere length regulation. Nat Struct Mol Biol., 2008; 15: 79-84.

50. Griffith J.D, Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999; 97: 503-14.

51. Poulet A., Buisson R., Faivre-Moskalenko C., Koelblen M., Amiard S., Montel F., et al., TRF2 promotes, remodels and protects telomeric Holliday junctions. EMBO J. 2009; 28: 641-51.

52. San Miguel P. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996; 274: 765-768.

53. Kazazian Jr. H.H. Mobile elements: drivers of genome evolution. Science. 2014; 303:1626-1632.

54. Brookfield J.F., The ecology of the genomedmobile DNA elements and their hosts. Nat. Rev. Genet., 2005; 6: 128-136.

55. Biemont C., Vieira C., Genetics: junk DNA as an evolutionary force. Nature., 2006; 443: 521-524.

56. Zhou L., Mitra R., Atkinson P.W., Hickman A.B., Dyda F., Craig N.L., Transposition of hAT elements links transposable elements and V(D)J recombination. Nature., 2004; 432: 995-1001.

57. Kapitonov V.V., Jurka J., RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol., 2005; 3: 0998 - 1011.

58. Eickbush T.H., Telomerase and retrotransposons: which came first. Science., 1997; 277: 911-912.

59. Silva J.C., Kidwell M.G., Horizontal transfer and selection in the evolution of P elements. Mol. Biol. Evol., 2000; 17: 1542-1557.

60. Diao X., Freeling M., Lisch D., Horizontal transfer of a plant transposon. PLoS Biol., 2006; 4: 0119-0128.

61. Roy S.W., The origin of recent introns: transposons? Genome Biol., 2004; 5: 251.

62. Kazazian H., Haemophilia. A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature., 1988; 332: 164-166.

63. Miki Y., Disruption of the APC gene by a retrotransposal insertion of L1 sequence in colon cancer. Cancer Research., 1992; 52: 643-645.

64. Pray L., Transposons: The jumping genes. Nature Education. 2008; 1: 1-6.

65. Miura A. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature., 2001; 411: 212-214.

66. Freeman J.L., Perry G.H., Feuk L., Redon R., McCarroll S.A., Altshuler D.M., et al., Copy number variation: new insights in genome diversity. Genome Res., 2006; 16: 949-61.

67. Lupski J.R, de Oca-Luna R.M., Slaugenhaupt S., Pentao L., Guzzetta V., et al., DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell. 1991; 66: 219-32.

68. Riggins G.J., Lokey L.K., Chastain J.L., Leiner H.A., Sherman S.L., Wilkinson K.D., et al ., Human genes containing polymorphic trinucleotide repeats. Nat. Genet. 1992; 2: 186-191.

69. Epplen C., Melmer G., Siedlaczck I., Schwaiger F.W., Maueler W., Epplen, J.T., On the essence of “meaningless” simple repetitive DNA in eukaryote genomes. EXS. 1993; 67: 29-45.

70. Subirana J.A., Messeguer X., Structural families of genomic microsatellites. Gene. 2008; 408: 124-132

71. Strom C.M., Crossley B., Redman J.B., Buller A., Quan F., Peng M., et al., Molecular testing for Fragile X Syndrome: Lessons learned from 119,232 tests performed in a clinical laboratory. Genet. Med. 2007; 9: 46-51.

72. Crawford D.C., Acuna J.M., Sherman S.L., FMR1 and the fragile X syndrome: Human genome epidemiology review. Genet. Med., 2001; 3: 359-371.

73. Bailey JA., Yavor A.M., Massa H.F., Trask B.J., Eichler E.E., Segmental duplications: organization and impact within the current human genome project assembly. Genome Res., 2001; 11: 1005-1017.

74. Wang Y., Leung FC., Long inverted repeats in eukaryotic genomes: recombinogenic motifs determine genomic plasticity. FEBS Lett., 2006; 580: 1277-1284.

75. Warburton P.E., Giordano J., Cheung F., Gelfand Y., Benson G., Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res., 2004; 14: 1861-1869.

76. Achaz G., Netter P., Coissac E., Study of intrachromosomal duplications among the eukaryote genomes. Mol Biol Evol., 2001; 18: 2280-2288.

77. Samonte R.V., Eichler E.E., Segmental duplications and the evolution of the primate genome. Nat Rev Genet., 2002; 3: 65-72.

Article Metrics

87 Absract views 168 PDF Downloads 255 Total views

Related Search

By author names

Citiaion Alert By Google Scholar


Similar Articles