Open Access
Published:  Feb 25, 2014
Bacterial cellulose membranes functionalized with hydroxyapatite or collagen with addition or not of osteogenic growth peptides (OGP) or its C-terminal pentapeptide OGP[10-14] were developed for improving bone repair. The aim of this study was to evaluate the potential cytotoxic, genotoxic and mutagenic effects of those nanocomposites in order to know whether they would be safe for biomedical applications. All nanocomposites (BC, BC-HA, BC-Col, BC-HA OGP, BC-Col-OGP, BC-HA OGP[10-14] and BC-Col-OGP[10-14]) were prepared as discs (5 mm in diameter) and submitted to in vitro tests in 24-well plates seeded with CHO-K1 cells. Cell viability was evaluated by the XTT assay and reproductive cell death was detected by the clonogenic assay. Genotoxicity was assessed by the comet assay and the cytokinesis-blocked micronucleus (CBMN) assay was used to detect mutagenicity. Only BC-HA OGP[10-14] showed a slight mutagenic effect, all other nanocomposites materials demonstrated no cytotoxic, genotoxic or mutagenic effects. In conclusion, the BC-HA OGP [10-14] promoted a slight mutagenic effect and future studies must be investigated for better understanding this result. The utilization of the investigated materials is promising for biomedical applications, such as bone repair and tissue engineering.
Raquel Mantuaneli Scarel-Caminaga, Sybele Saska, Leonardo Pereira Franchi, Raquel A. Santos, Ana Maria Minarelli Gaspar, Ticiana S.O. Capote, Sidney José Lima Ribeiro, Younés Messaddeq, Reinaldo Marchetto, Catarina S. Takahashi. Nanocomposites based on bacterial cellulose in combination with osteogenic growth peptide for bone regeneration: cytotoxic, genotoxic and mutagenic evaluations. J App Biol Biotech. 2014; 2 (01): 001-008.
1. Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, et al. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicology Letters. 2009; 186:166-173.
2. Dalai S, Pakrashi S, Kumar RSS, Chandrasekaran N, Mukherjee A. A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicology Research. 2012;1:116-130.
3. Laha D, Bhattacharya D, Pramanik A, Santra CR, Pramanik P, Karmakar P. Evaluation of copper iodide and copper phosphate nanoparticles for their potential cytotoxic effect. Toxicology Research. 2012;1:131-136.
4. Li JH, Liu XR, Zhang Y, Tian FF, Zhao GY, Yu QLY, et al.,Toxicity of nano zinc oxide to mitochondria. Toxicology Research. 2012;1:137-144.
5. Czaja W, Krystynowicz A, Bielecki S, Brown RM, Jr. Microbial cellulose-the natural power to heal wounds. Biomaterials. 2006;27:145-151.
6. Czaja W, Romanovicz D, Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose. 2004;11:403-411.
7. Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, et al.,Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. Journal of Controlled Release. 2006;113:43-56.
8. Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, et al.,Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol. 1990;24-25:253-264.
9. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition. 2005;44:3358-3393.
10. Mayall RC, Mayall AC, Mayall LC, Rocha HC, Marques LC. Tratamento das úlceras tróficas dos membros com um novo substituto de pele. Revista Brasileira de Cirurgia. 1990;80:257-283.
11. Jantova S, Theiszova M, Letasiova S, Birosova L, Palou TM. In vitro effects of fluor-hydroxyapatite, fluorapatite and hydroxyapatite on colony formation, DNA damage and mutagenicity. Mutation Research. 2008;652:139-144.
12. LeGeros RZ. Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials. 1993;14:65-88.
13. Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. Journal of Materials Science: Materials in Medicine. 2003;14:201-209.
14. Mann S. Biomineralization: Principles and concepts in biorganic materials chemistry. United Kingdom: Oxford-University Press; 2005.
15. Saska S, Barud HS, Gaspar AM, Marchetto R, Ribeiro SJ, Messaddeq Y. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. International Journal of Biomaterials. 2011;2011:175362.
16. Cai ZJ, Yang G. Bacterial Cellulose/Collagen Composite: Characterization and First Evaluation of Cytocompatibility. Journal of Applied Polymer Science. 2011;120:2938-2944.
17. Saska S, Teixeira LN, de Oliveira PT, Gaspar AMM, Ribeiro SJL, Messaddeq Y, et al.,Bacterial cellulose-collagen nanocomposite for bone tissue engineering. Journal of Materials Chemistry. 2012;22:22102-22112.
18. Wiegand C, Elsner P, Hipler UC, Klemm D. Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose. 2006;13:689-696.
19. Bab I, Chorev M. Osteogenic growth peptide: from concept to drug design. Biopolymers. 2002;66:33-48.
20. Bab I, Gazit D, Chorev M, Muhlrad A, Shteyer A, Greenberg Z, et al.,Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. The EMBO Journal. 1992;11:1867-1873.
21. Gabet Y, Muller R, Regev E, Sela J, Shteyer A, Salisbury K, et al.,Osteogenic growth peptide modulates fracture callus structural and mechanical properties. Bone. 2004;35:65-73.
22. Fei QM, Cui DF, Chen TY, Chen ZW. Synthetic Osteogenic Growth Peptide Stimulates Osteoblast Osteogenic Activity and Enhances Fracture Healing in Rabbits. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2001;33:415-420.
23. Shuqiang M, Kunzheng W, Xiaoqiang D, Wei W, Mingyu Z, Daocheng W. Osteogenic growth peptide incorporated into PLGA scaffolds accelerates healing of segmental long bone defects in rabbits. Journal of Plastic Reconstructive & Aesthetic Surgery. 2008;61:1558-1560.
24. Chen YC, Bab I, Mansur N, Muhlrad A, Shteyer A, Namdar-Attar M, et al.,Structure-bioactivity of C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)]. Journal of Peptide Research. 2000;56:147-156.
25. Hui Z, Yu L, Xiaoli Y, Xiang H, Fan Z, Ningbo H, et al.,C-terminal pentapeptide of osteogenic growth peptide regulates hematopoiesis in early stage. Journal of Cellular Biochemistry. 2007;101:1423-1429.
26. Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, dos Santos RA, Gaspar A, et al.,Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. Journal of Materials Science: Materials in Medicine. 2012;23:2253-2266.
27. Jonas R, Farah LF. Production and application of microbial cellulose. Polymer Degradation and Stability. 1998;59:101-106.
28. Moreira S, Silva NB, Almeida-Lima J, Rocha HAO, Medeiros SRB, Alves C, et al.,BC nanofibres: In vitro study of genotoxicity and cell proliferation. Toxicology Letters. 2009;189:235-241.
29. Schmitt DF, Frankos VH, Westland J, Zoetis T. Toxicologic Evaluation of Cellulon(Tm) Fiber - Genotoxicity, Pyrogenicity, Acute and Subchronic Toxicity. Journal of the American College of Toxicology. 1991;10:541-554.
30. Chan WC, White PD. Fmoc solid phase peptide synthesis: a practical approach. New York: Oxford University Press; 2000.
31. Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nature Protocols. 2006;1:2315-2319.
32. Phillips HJ. Dye exclusion tests for cell viability. Tissue culture: Methods and applications. New York: Academic Press; 1973. p.406-408.
33. Singh NP, Mccoy MT, Tice RR, Schneider EL. A Simple Technique for Quantitation of Low-Levels of DNA Damage in Individual Cells. Experimental Cell Research. 1988;175:184-191.
34. Santos RA, Takahashi CS. Anticlastogenic and antigenotoxic effects of selenomethionine on doxorubicin-induced damage in vitro in human lymphocytes. Food Chemistry Toxicology. 2008;46:671-677.
35. Garcia O, Mandina T, Lamadrid AI, Diaz A, Remigio A, Gonzalez Y, et al.,Sensitivity and variability of visual scoring in the comet assay - Results of an inter-laboratory scoring exercise with the use of silver staining. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis. 2004;556:25-34.
36. Speit G, Hartmann A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods in Molecular Biology. 1999;113:203-212.
37. Fenech M. Cytokinesis-block micronucleus cytome assay. Nature Protocols. 2007;2:1084-1104.
38. Giavaresi G, Tschon M, Daly JH, Liggat JJ, Sutherland DS, Agheli H, et al.,In vitro and in vivo response to nanotopographically-modified surfaces of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone. Journal of Biomaterials Science Polymer Edition. 2006;17:1405-1423.
39. Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P. Engineering microporosity in bacterial cellulose scaffolds. Journal of Tissue Engeneering and Regenerative Medicine. 2008;2:320-330.
40. Ren J, Zhao P, Ren TB, Gu SY, Pan KF. Poly (D,L-lactide)/nano-hydroxyapatite composite scaffolds for bone tissue engineering and biocompatibility evaluation. Journal of Materials Science: Materials in Medicine. 2008;19:1075-1082.
41. Rajab NF, Yaakob TA, Ong BY, Hamid M, Ali AM, Annuar BO, et al.,DNA damage evaluation of hydroxyapatite on fibroblast cell L929 using the single cell gel electrophoresis assay. Medical Journal of Malaysia. 2004;59 Suppl B:170-171.
42. Theiszova M, Jantova S, Letasiova S, Valik L, Palou MT. Comparative study of a new composite biomaterial fluor-hydroxyapatite on fibroblast cell line NIH-3T3 by direct test. Biologia. 2008;63:273-281.
43. Jantova S, Letasiova S, Theiszova M, Palou M. Comparison of murine fibroblast cell response to fluor-hydroxyapatite composite, fluorapatite and hydroxyapatite by eluate assay. Acta Biologica Hungarica. 2009;60:89-107.
44. Sumantran VN, Boddul S, Koppikar SJ, Dalvi M, Wele A, Gaire V, et al.,Differential growth inhibitory effects of W. somnifera root and E. officinalis fruits on CHO cells. Phytotherapy Research. 2007;21:496-499.
45. Saotome K, Morita H, Umeda M. Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicology In Vitro. 1989;3:317-321.
46. Yalkinoglu AO, Schlehofer JR, zur Hausen H. Inhibition of N-methyl-N'-nitro-N-nitrosoguanidine-induced methotrexate and adriamycin resistance in CHO cells by adeno-associated virus type 2. International Journal of Cancer. 1990;45:1195-1203.
47. Young CS, Bradica G, Hart CE, Karunanidhi A, Street RM, Schutte L, et al.,Preclinical Toxicology Studies of Recombinant Human Platelet-Derived Growth Factor-BB Either Alone or in Combination with Beta-Tricalcium Phosphate and Type I Collagen. Journal of Tissue Engineering. 2011;2010:246215.
48. Spreafico A, Frediani B, Capperucci C, Leonini A, Gambera D, Ferrata P, et al.,Osteogenic growth peptide effects on primary human osteoblast cultures: potential relevance for the treatment of glucocorticoid-induced osteoporosis. Journal of Cellular Biochemistry. 2006;98:1007-1020.
49. Greenberg Z, Gavish H, Muhlrad A, Chorev M, Shteyer A, Attar-Namdar M, et al.,Isolation of osteogenic growth peptide from osteoblastic MC3T3 E1 cell cultures and demonstration of osteogenic growth peptide binding proteins. Journal of Cellular Biochemistry. 1997;65:359-367.
50. Gabarin N, Gavish H, Muhlrad A, Chen YC, Namdar-Attar M, Nissenson RA, et al.,Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)] and attenuation of activation by cAMP. Journal of Cellular Biochemistry. 2001;81:594-603.
51. Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. Journal of Biological Chemistry. 2005;280:7317-7325.
52. Swarthout JT, Doggett TA, Lemker JL, Partridge NC. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. Journal of Biological Chemistry. 2001;276:7586-7592.
53. Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, et al.,NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials. 2009;30:3891-3914.
54. Zhang XY, Hu WB, Li J, Tao L, Wei Y. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicology Research. 2012;1:62-68.
55. Yang ST, Wang TC, Dong E, Chen XX, Xiang K, Liu JH, et al.,Bioavailability and preliminary toxicity evaluations of alumina nanoparticles in vivo after oral exposure. Toxicology Research. 2012;1:69-74.
56. Gontijo AMMC, Tice R. Teste do cometa para a detecção de dano no DNA e reparo em células individualizadas. Mutagênese Ambiental. Canoas: Ulbra; 2003. p.247-279.
57. Arun M, Silja PK, Mohanan PV. Evaluation of hydroxyapatite-bioglass and hydroxyapatite-ethyl vinyl acetate composite extracts on antioxidant defense mechanism and genotoxicity: an in vitro study. Toxicology Mechanisms and Methods. 2011;21:561-566.
58. Dos Santos RA, Jordao AA, Vannucchi H, Takahashi CS. Protection of doxorubicin-induced DNA damage by sodium selenite and selenomethionine in Wistar rats. Nutrition Research. 2007;27:343-348.
Year
Month