Research Article | Volume: 5, Issue: 4, July-August, 2017

Proteome and fermentative parameters of Saccharomyces cerevisiae CAT-1 under Very High Gravity Fermentation (VHGF) using sugarcane juice

Gabriela de Sá Azarias Heloisy Suzes Barbosa Cynthia Barbosa Rustiguel José Cesar Rosa José Roberto Ernandes Luis Henrique Souza Guimarães   

Open Access   

Published:  Aug 14, 2017

DOI: 10.7324/JABB.2017.50402

Alcoholic fermentation is an important process in the modern world, allowing the production of ethanol for several applications. Different Saccharomyces cerevisiae strains have been used for this purpose, such as CAT-1, a strain resistant to different stress factors. Hence, our aim was to analyze some fermentative parameters and the proteome of S. cerevisae CAT-1 under Very High Gravity Fermentation (VHGF) using sugarcane juice as fermentative medium. The yeast was cultured in the must with the sucrose concentration adjusted to 2%, 14%, 21% and 30%, for 10 h at 30 ºC. The cell viability was 96-100% for all sucrose concentrations analyzed and the biomass increased for each condition as time function. The highest ethanol recovery was obtained under 30% sucrose. Considering the S. cerevisiae CAT-1 proteome under 14% and 30% sucrose, qualitative and quantitative differences were found in the protein expression. Important enzymes for fermentation, such as enolase and one alcohol dehydrogenase isoform were more expressed at 30% sucrose than with 14% sucrose. The yeast S. cerevisiae CAT-1 is an interesting strain to be used for fermentation under VHGF technology using sugarcane juice, allowing high ethanol recovery with increased expression of proteins related to alcoholic fermentation and viability as well.

Keyword:     Alcoholic fermentation Saccharomyces cerevisiae Saccharomyces proteome Very High Gravity Fermentation


Azarias GS, Barbosa HS, Rustiguel CB, Rosa JC, Ernandes JR, Guimarães LHS. Proteome and Fermentative Parameters of Saccharomyces cerevisiae CAT-1 under Very High Gravity Fermentation (VHGF) using sugarcane juice. J App Biol Biotech. 2017; 5 (04): 006-013.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Betite VC, Miranda-Júnior M, Oliveira JE,Ernandes JR. Very high gravity sucrose fermentation by Brazilian industrial yeast strains: effect of nitrogen supplementation. J Inst Brew 2012; 118:174-178.

2. Santos RM, Nogueira FCS, Brasil AA, Carvalho PC, Leprevost FV,Domont GB, Eleutherio ECA. Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1and PE-2. J Proteomics. 2016. DOI: 10.1016/j.jprot.2016.08.020.

3. Reis VR, Bassi APG, Silva JCG, Ceccato-Antonini SR. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation. Braz J Microbiol 2013; 44(4):1121-1131.

4. Basso LC, Amorim HV, Oliveira AJ,Lopes ML.Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res. 2008; 8(7):1155-1163.

5. Amorim Neto HB, Yohannan BK, Bringhurst TA, Brosnan JM, Pearson SY, Walker JW,Walker GM.Evaluation of Brazilian fuel alcohol yeast strain for scotch whisky fermentations. J Institute Brewing. 2009; 3(115):198-207.

6. Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A, Nyren P, Shafer RW, Basso LC,Amorim HV, Oliveira AJ, Davis RW, Ronaghi M, Gharizadeh B, Stambuk BU. Whole-genome sequencing of the efficient industrial fuel-ethanolfermentative Saccharomyces cerevisiae strain CAT-1. Mol Genet Genomics. 2012;287: 485-494.

7. Romaní A, Pereira F, Johansson B, Domingues L. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Biores Technol 2015; 179:150-158.

8. Carvalho JCM,& Sato S. Fermentação descontínua. In: Schimidell W, Lima UA, Aquarone E, Borzani W (eds.). Biotecnologia industrial: engenharia química. São Paulo Edgard Blucher, v. 2, chapter 9, pp. 205-222, 2001.

9. Basso LC, Basso TO, Rocha SN.Ethanol production in Brazil: the industrial process and its impact on yeast fermentation, In:Biofuel Production-Recent Developments and Prospects, Bernardes MAS (Ed.), ISBN: 978-953-307-478-8, InTech, Croatia, pp. 85-100, 2011.

10. Fadel M, Zohri A-NA, Makawy M, Hsona MS, Abdel-Azis AM. Recycling of vinasse in ethanol fermentation and application in Egyptian distillery factories. Afr J Biotechnol. 2014; 13(47):4390-4398.

11. Puliglunda P, Smogrovicova D, Obulam VSR,Ko S.Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol. 2011; 38(9):1133-1144.

12. Joannis-Cassan J, Riess J, Jolibert F, Taillandier P. Optimization of very high gravity fermentation process for ethanol production from industrial sugar beet syrup. Biomass Bioenergy. 2014; 70:165-173.

13. Cheng JS, Qiab B, YYuan YJ. Comparative proteome analysis of robust Saccharomyces cerevisiae insights into industrial continuous and batch fermentation. Appl Microbiol Biotechnol. 2008; 81(2):327-338.

14. Jun H, Kieselbach T, Jönsson LJ. Comparative proteome analysis of Saccharomyces cerevisiae: A global overview of in vivo targets of the yeast activator protein 1. BMC Genomics. 2012;13: 230. DOI: 10.1186/1471-2164-13-230.

15. Pham TK, Wright PC.Proteomic analysis of calcium-alginate immobilized Saccharomyces cerevisiae under high-gravity fermentation conditions. J Proteome Res. 2008; 7(2):515-525.

16. Pham TK, Chong PK, Gan CS, Wright PC. Proteomic analysis of Saccharomyces cerevisiae under high gravity fermentation conditions. J Proteome Res. 2006; 5(12):3411-3419.

17. Moreira CS, Santos MSM, Barros NS, Cardoso CAL, Batistote M. Evaluation of morphological and physiological parameters of industrial yeast strains with potential biotechnological for the production of etanol. Ciência e Natura. 2015; 37(4):55-63.

18. Moazed D, Johnson AD. A Deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell. 1996; 86:667-677.

19. Bradford MM.A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-254.

20. Laemmli UK.Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 681-685.

21. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L,Righetti PG. Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophoresis 2004; 25(9): 1327-1333.

22. Shen l,Li Y, Jiang l, Wang, X. Response of Saccharomyces cerevisiae to the stimulation of lipopolysaccharide. PLoS One. 2014;9(8): e104428.

23. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31; 426-429, 1959.

24. Zanon JP, Peres FS,Gattás EAL.Colorimetric assay of ethanol using alcohol dehydrogenase from dry baker’s yeast. Enzyme Microbial Technol. 2007; 40(3):466-470.

25. Mohammadi A, Razavi SH, Mousavi SM, Rezaei K.A comparison between sugar consumption and ethanol production in wort byimmobilized Saccharomyces cerevisiae, Saccharomyces ludwigii and Saccharomyces rouxiion brewer’s spent grain. Braz J Microbiol. 2011; 42:605-615.

26. Pereira FB, Guimarães PMR, Teixeira JA,Domingues L.Optimization of low-cost medium for very high gravity ethanol fermentation by Saccharomyces cerevisae using statistical experimental design. Biores Technol. 2010; 101(20):7856-7863.

27. Junior MM, Oliveira JE, Batistote M, Ernandes JR. Evaluation of Brazilian etanol production yeasts for maltose fermentation in media containing structurally complex nitrogen sources. J Inst Brew. 2012;118: 82-88.

28. Nguyen TH,Viet Man LV. Using high pitching rate for improvement of yeast fermentation performance in high gravity brewing. Int Food Res J. 2009; 16:547-554.

29. Betite VC, Júnior MM, Oliveira JE, Ernandes JR. Very high gravity sucrose fermentation by Brazilian industrial yeast strains: effect of nitrogen supplementation. JinstBrew. 2012;118: 174-178.

30. Zuzuarregui A, Monteoliva L, Gil C, Olmo ML.Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisae to wine fermentation. Appl Environment Microbiol. 2006;72(1): 836-847.

31. Huang EL, Orsat V, Shah MB, Hettich RL, VerBerkmoes NC, Lefsrud MG. The temporal analysis of yeast exponential phase using shotgun proteomics as a fermentation monitoring technique. J Proteomics. 2012; 75:5206-5214.

32. Molina MM, Bellí G, Torre MA, Rodríguez-Manzaneque MT,Herrero E.Nuclear monothiolglutaredoxins of Saccharomyces cerevisae function as a mitochondrial glutaredoxins. J Biol Chem. 2004; 279(50):51923-51930.

33. Gutteridge A, Pir P, Castrillo JI, Charles PD, Lilley KS, Oliver SG. Nutrient control of eukaryote cell growth: a systems biology study in yeast. BMC Biol. 2010;8: 68.

34. Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J. Comparative proteomic analysis of Saccharomyces cerevisae under different nitrogen sources. J Proteomics. 2014;101: 102-112.

35. Go GK, Koudelka A, Amyes TL,Richard JP. The Role of Lys-12 in catalysis by triosephosphate isomerase:A Two-Part Substrate Approach. Biochem. 2010;49(25): 5377-5389.

36. Mazzoni C, Torella M, Petrera A, Palermo V,Falcone C. PGK1, the gene encoding the glycolitic enzyme phosphoglycerate kinase, acts as a multicopy suppressor of apoptotic phenotypes in S. cerevisiae. Yeast. 2009; 26: 31-37.

37. Nakanishi H, Nakayama K, Yokota A, Tachikawa H, Takahashi N,Jigami Y.Hut1 proteins identified in Saccharomyces cerevisiae and Schizosaccharomyces pombe are functional homologues in the protein-folding process at the endoplasmic reticulum. Yeast. 2001:18: 543-554.

38. Arévalo-Rodríguez M,Heitman J. Cyclophilin A is localized to the nucleus and controls meiosis inSaccharomyces cerevisiae. Eukaryotic Cell. 2005;4(1): 17-29.

39. Arévalo-Rodriguez M, Wu X, Hanes SD, Heitman J. Prolyl isomerases in yeast. Front Biosci. 2004;9: 2420-2446.

40. Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE, Kaya A,Hacioglu E, Kwak G-H, Koc A, Kim HY,Gladyshev VN.Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem. 2009;284(7): 4354-4364.

41. Ma X-X, Guo P-C, Shi W-W, Luo M, Tan X-F, Chen Y,Zhou C-Z.Structural plasticity of the thioredoxin recognition site of yeast methionine S-sulfoxide reductase Mxr1. J Biol Chem. 2011; 286(15):13430-13437.

42. Shen H, Wang H, Liu Q, Liu H, Teng M,Li X.Structural insights into RNA recognition properties of glyceraldehyde-3-phosphate dehydrogenase 3 from Saccharomyces cerevisiae. IUBMB Life. 2014; 66(9):631-638.

43. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell. 2009; 138(4):795-806.

Article Metrics

72 Absract views 158 PDF Downloads 230 Total views

Related Search

By author names

Citiaion Alert By Google Scholar