Review Article | Volume: 5, Issue: 3, May-June, 2017

Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A Review

Ijaz Gul M. Sheeraz Ahmad S. M. Saqlan Naqvi Ansar Hussain Rahmat Wali Ammad Ahmad Farooqi Ibrar Ahmed   

Open Access   

Published:  Jun 19, 2017

DOI: 10.7324/JABB.2017.50313
Abstract

The present review summarizes the literature on applications and development of polyphenol oxidase-based biosensors for detection of phenolic compounds present in industrial waste waters. Phenolic compounds including phenol and its derivatives: bisphenol A, catechol, and cresol are widely used in industrial processes. These compounds cause toxicity to living organisms and can be bioaccumulated in environment and food chain. Global production of phenolic compounds is about 50,000 tons per annum. The presence of these compounds in air, water, and food poses toxicity risks to human health and environment. Monitoring of concentration of phenolic compounds is necessary to avoid the risks posed by these compounds. Conventional methods for the detection and quantification of these compounds include laboratory-based spectrophotometric and chromatographic methods. Biosensors can be an efficient alternative to conventional methods due to their inherent specificity, simplicity and quick responsiveness. Biosensors can play an important role to improve the quality of life. Polyphenol oxidase-based biosensors can potentially be applied to detect phenolic compounds in various biological and non-biological materials.


Keyword:     Polyphenol oxidase biosensor phenolics tyrosinase laccase.


Citation:

Gul I, Ahmad MS, Naqvi SMS, Hussain A, Wali R, Farooqi AA, Ahmed I. Polyphenol oxidase (PPO) based biosensors for detection of phenolic compounds: A Review. J App Biol Biotech. 2017; 5 (03): 072-085.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Rodríguez-Delgado M M, Melissa M, Gibrán S. Alemán-Nava, José M, , Graciano D, Sergio O, Martínez-Chapa, Damià B, Roberto, P. Laccase-based biosensors for detection of phenolic compounds, Trends Anal. Chem. 2015; 74: 21–45.

2. Dutton J, Copeland L G, Playfer J R, Roberts N B. Measuring l-dopa in plasma and urine to monitor therapy of elderly patients with Parkinson disease treated with l-dopa and a dopa decarboxylase inhibitor. Clinic. Chem. 1993; 39 : 629–634.

3. Sukhonthara S, Kaewka, theerakulkait C, Sukhonthara S, Kaewka K, Theerakulkait C. Inhibitory effect of rice bran extracts and its phenolic compounds on polyphenol oxidase activity and browning in potato and apple puree. Food Chem. 2016; 190: 922–927.

4. Kulys J, Bratkovskaja I. Antioxidants determination with laccase, Talanta. 2007; 72: 526–531.

5. Annachhatre A P, Gheewala S H. Biodegradation of chlorinated phenolic compounds. Biotechnol. Adv. 1996; 14: 35–56.

6. Baldrian P. Fungal laccases occurrence and properties, F E M S. Microbiol. Rev. 2006; 30: 215–242.

7. Riedel K, Hensel J, Rothe S, Neumann B, Scheller F. Microbial sensors for determination of aromatics and their chloro derivatives. Part II: determination of chlorinated phenols using a Rhodo coccus containing biosensor. Appl Microbiol Biotechnol.1993; 38: 556–559.

8. Luthria D, Sing S P, Wilson T, Vorsa N, Banuelos B S. Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: Plant-to-plant variation. Food chem. 2010; 121: 406-411.

9. Meulenberg E P. Phenolics: occurrence and immunochemical detection in environment and food. Molecules. 2009; 14: 439-73.

10. Gardziella A, Pilato L A, Knop A. Phenolic resins: chemistry, applications, standardization, safety and ecology. 2nded, Springer- Vercelog, Berlin/Heidelberg, 2010. http://doi.org/10.1016/S0924-2244(02)00155-3

11. Makarenko A A, Bezverbnaya I P, Kosheleva I A, Kuvichkina T N, Yasov P V, Reshetilov A N. Development of biosensors for phenol determination from bacteria found in petroleum fields of West Siberia. Appl Biochem Microbiol.2002; 38: 23–27.

12. Roberto Stevanato , Sabrina Fabris , and Federico Momo. New Enzymatic Method for the Determination of Total Phenolic Content in Tea and Wine. J. Agric. Food Chem., 2004, 52 (20), pp 6287–6293

13. Montero L, Lonradi S, Weiss S, Popp P. Determination of phenols in lake and ground water samples by stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. J Chromatogr A. 2005; 10: 71, 63-9.

14. Clesceri L S, Greenberg A E, Eaton A D. Standard methods for the examination of water and waste water. American Public Health Association, 20th edn, pp1998; 6: 73–78.

15. Rogers K R, Becker J Y, Cembrano J, Chough S H. Viscosity and binder composition effects on tyrosinase based carbon paste electrode for detection of phenol and catechol. Talanta. 2001; 54: 1059–1065.

16. Tuncagil S, Varis, Topare L. Design of a biosensor based on 1-(4- nitrophenyl)-2,5-di(2-thienyl)-1H pyrrole. J Mol Cat B Enzym. 2010; 64: 195-199.

17. 16. Munteanu F D, Lindgren A, Emneus J, Gorton L, Ruzgas T, Csoregi E. Bio-electrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal. Chem. 1998; 70: 2596–2600.

18. Husain Q, Jan U. Detoxification of phenols and aromatic amines from polluted wastewater by using phenoloxidases. J Sci Ind Res. 2000; 59: 286–93.

19. Rubianes M, Rivas G. Amperometric biosensor for phenols and catechols based on iridium‐polyphenol oxidase‐modified carbon paste. Electroanalysis. 2000; 1159–1162

20. Gomes S A SS, Nogueira J M F, Rebelo M J F. An amperometric biosensor for polyphenolic compounds in red wine. Biosens. Bioelectron. 2004; 20: 1211–1216.

21. Singh S, Solanki P R, Pandey M K, Malhotra B D. Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. Sens. Actuators B. 2006; 115: 534–541.

22. Tan Y, Guo X, Zhan J, Kan J. Amperometric catechol biosensor based on polyaniline–polyphenol oxidase. Biosensors and Bioelectronics. 2010; 25: 1681–1687.

23. Seo S Y K, Sharma N. Mushroom tyrosinase: recent prospects. J Agric Food Chem. 2003; 51: 2837-2853.

24. Chen I S, Charest D J, Marshall M R, Wei C I. Comparison of two treatment methods on the purification of shrimp polyphenol oxidase. I Sei Food Agric.1997; 75: 12-18.

25. Ziyan E, Pekyardimic S. Characterization of Polyphenol Oxidase from Helianthus tuberosus. Turk. J Chem. 2003; 27: 217-225.

26. Simsek S, Yemenicioglu A. Partial purification and kinetic characterization of mushroom polyphenol oxidase and determination of its storage stability in different lyophilized forms. Process Biochem. 2007; 42: 943-950.

27. Queiroz C, Lopes M L M, Fialho E, Valente-Mesquita V L. Polyphenol oxidase: characteristics and mechanisms of browning control. Food Rev Int. 2008; 24: 361-375.

28. Aydemir T. Partial purification and characterization of polyphenol oxidase from artichoke (Cynara scolymus L.) heads. Food Chem. 2004; 87: 59–67.

29. Espin J C, Varon R., Fenoll L G, Gilabert M A, Garcia- ruiz P A, Tudela, J, Garcia-canovas F. Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase.. Eur. J. Biochem.2000; 267: 1270-1279.

30. Karam J, Nicell J A. Potential applications of enzymes in waste treatment J. Chem Technol Biotechnol. 1997; 69: 141.

31. Duran N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ. 2000; 28: 83–99.

32. Claus H, Decker H. Bacterial tyrosinases. Syst Appl Microbiol. 2006; 29: 3-14.

33. Jaenicke E, Decker H. Tyrosinases from crustaceans form hexamers. Biochem. J. 2003; 371: 515–523.

34. Wichers H J, Recourt K, Hendriks M, Ebbelaar C F M, Biancone G, Hoeberichts F A. Cloning, expression and charac-terisation of two tyrosinase cDNAs from Agaricus bisporus. Appl. Microbiol. Biotechnol. 2003; 61: 336–341.

35. Yoruk R, Maurice R M. Physicochemical properties and function of plant polyphenol oxidase: a review. J. food. Bioch. 2003; 27: 361-422.

36. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. Crystallographic evidence that the dinuclear copper center of postharvest browning with tyrosinase inhibitors. Biol. Technol. 2006; 39: 272–277.

37. Hernandez-Romero D, Snachez-Amat A, Solano F. A tyrosinase with an abnormally high tyrosine hydroxylase/dopa oxidase ratio. Role of the seventh histidine and accessibility to the active site. FEBS J. 2006; 273: 257–270.

38. Nakamura M, Hakajima T, Ohba Y, Yamauchi S, Lee B R, Ichisima Identification of copper ligands in Aspergillus oryzae tyrosinase by site directed mutagenesis. Biochem. J. 2000; 350: 537–545.

39. Cary J W, Lax A R, Flurkey W H. Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Mol. Biol. 1992; 20: 245–253.

40. Dervall, B. J. Phenolase and pectic enzyme activity in the chocolate spot disease of beans. Nature. 1961; 189: 311.

41. Dinckaya E, Akyilmaz E, Akgol S, Onal S T, Zihnioglu F, Telefoncu A. A novel catechol oxidase enzyme electrode for the specific determination of catechol. Biosci Biotechnol.Biochem. 1998; 62: 2098-2100.

42. Sarkar S, Shilpa P S G, Reddy S M. Studies on oxidative enzymes (polyphenol oxidase and peroxidase) in four varieties of banana (Musa paradisiaca L.) Indian Phytopathol. 2010; 63:

43. Guell M, Siegbahn P E M. Theoretical study of the catalytic mechanism of catechol oxidase. J Biol Inorg Chem. 2007; 12: 1251- 1264.

44. Klabunde T C, Eicken J C, Sacchettini, Krebs B. Crystal Structure of a Plant Catechol Oxidase Containing a Dicopper Center. Nature struct biol. 1998; 5: 1084–90.

45. Alexandre G, Zhulin I B. Laccases are widespread in bacteria. Trends Biotechnol. 2000; 18: 41-42.

46. Bajpai P. Application of enzymes in the pulp and paper industry. Biotechnol Prog. 1999; 15: 147.

47. Rodriguez E, Pickard M A, Vazquez R. Industrial dye decolorization by laccase from ligninolytic fungi. Curr Microbiol. 199; 3: 27.

48. Gianfreda L, Xu F J M. Bollag, A. Laccases a useful group of oxidoreductive enzymes. Bioremediation. 1999; 3: 1.

49. Cullen D. Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol. 1997; 53: 273.

50. Ong E, Pollock W B R, Smith, M. Cloning and sequence analysis of two laccase complementary DNSs from the ligninolytic basidiomycete Trametes versicolor gene.1997; 196: 113.

51. Karahanian E G, Corsini S, Lobos S, Vicuna R. Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta. 1998; 14: 43-65.

52. Jonsson L J P, Cassland A, Reimann N O, Nilvebrant. Laccase from Trametes versi cloning expression and catalysis in M. Paice. J. Saddler (Eds.). Proceedings of the 7th International Conference on Biotechnology in the Pulp and Paper Industry, Vancouver, Canada, 1998; 7B: 175.

53. Collin P, Dowson P A D W. Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol. 1997; 63: 34-44.

54. Hatamoto O H, Sekine E, Nakano K A. Cloning and expression of cDNA encoding the laccase from Schizophyllum Commune. Biosci Biotechnol Biochem. 1999; 63: 58.

55. Omura T. Studies on laccases of lacquer trees-comparison of laccases obtained from Rhus vernicifera and Rhus succedanea. J. Biochem. 1961; 50: 264– 272.

56. Morozova O V, Shumakovich G P, Shleev S V, Yaropolov Y I. Laccase-mediator systems and their applications :a review. Appl. Biochem. Microbiol. 2007; 43: 523–535.

57. Madhavi V, Lele S S. Laccase: properties and applications. Bioresources. 2009; 4: 1694–1717.

58. Chaubey A, Malhotra B D. Review mediated biosensors. Biosens.Bioelectron. 2002; 7: 441–456.

59. Tortolini C, Rea S, Carota E, Cannistraro S, Mazzei F. Influence of the immobilization procedures on the electroanalytical performances of Trametes versicolor laccase based bioelectrode . Microchemical Journal. 2012; 100: 8-13.

60. Durán N, Rosa M A, D’Annibale A, Gianfreda L. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 2002; 31: 907–931.

61. Minussi R C, Pastore G M, Durán N. Potential applications of laccase in the food industry. Trends Food Sci Technol. 2002; 13: 205–216.

62. Mehrvar M B C, Scharer J, Moo-Young M, Luong. Fiber optic biosensors trends and advances. Anal Sci J. 2001; 6: 677–692.

63. D’Souza S F. Microbial biosensors. Biosens Bioelectron. 2001; 16: 337–353.

64. Sheldon R A. Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 2007; 349: 1289-130.

65. Arıca M, Altıntas B, BayramoÄŸlu G. Immobilization of laccase on tospacer-arm attached non-porous poly (GMA/EGDMA) beads: application for textile dye degradation, Bioresor. Technol. 2009; 100: 665–669.

66. Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Biomarkers. 200; 13: 637-657.

67. Brady B, Jordaan J. Advances in enzyme immobilisation. Biotechnol Lett. 200; 31: 1639-1650.

68. Khan A A, Akhtar S, Husain Q.. Adsorption of polyphenol oxidase on celite 545 directly from ammonium sulphate fractionated proteins of brinjal (Solanum melongena). J. Sci. Ind. Res. 2005; 64: 621-626.

69. Krajewska B. Ureases. II: properties and their customizing by enzyme immobilizations: a review. J. Mol. Catal. B. Enz. 2009; 59: 22-40.

70. Bryjak J, Kruczkiewicz P, Rekuc A, Peczyn´ska-Czoch W. Laccase immobilization on co- polymer of butyl acrylate and ethylene glycol dimethacrylate. Biochem. Eng. J. 2007; 35: 325–332.

71. Rochefort D, Kouisni L, Gendron K. Physical immobilization of laccase on an electrodebymeans of poly(ethyleneimine)microcapsules. J.Electroanal.Chem. 2008; 617: 53–63.

72. Ibarra-Escutia P, Gómez J J, Calas-Blanchard C, Marty J L, Ramírez-Silva M T. Amperometric biosensor based on a high resolution photo polymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta. 2010; 81: 1636–1642.

73. Thévenot D R, Toth K, Durst R A, Wilson G S. Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry. Division, Commission V.5 (Electroanalytical. Biosens Bioelectron. 2001; 16: 121–131.

74. Dzyadevych S V, Arkhypova V N, Soldatkin A P, El’skaya A V, Martelet C, Jaffrezic-Renault N. Amperometric enzyme biosensors: past, present and future. I R B M.2008; 29: 171–180.

75. Luong J H T, Groom C A, Male K B. Potential role of biosensors in the food and drink industries. Biosensors and Bioelectronics. 1991; 6: 547–554.

76. Jianguo L, L Gaoxiang. Application of biosensors for diagnostic analysis and bioprocess monitoring. Sens. Act. B: Chemic. 2000; 65: 26-31.

77. Bourgeois W, Stultz J E. On-line monitoring of wastewater quality. J chem and Techno Bio Technology. 2001; 76: 33–348.

78. Mehrvar M, Abdi M. Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors. Anal Sci. 2004; 20: 1113–1126.

79. Castillo J, Gáspár S, Leth S, Niculescu M, Mortari A, Bontidean I, Csöregi E. Biosensors for life quality. Sens Actuat B-Chem. 2004; 102: 179–194.

80. Park B W, Yoon D, Kim D S. Recent progress in bio-sensing techniques with encapsulated enzymes. Biosens Bioelectron. 2010; 26: 1–10.

81. Tsai Y C, Cheng C. Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds. Sens Actuators B-Chem. 2007; 125: 10-16.

82. Carvalho R H, Lemos F, Lemos M A N D A, Cabral J M S, Ribeiro F. Electro-oxidation of phenol on a new type of zeolite/graphite biocomposite electrode with horseradish peroxidase. J Mol Cat A Chemical. 2007; 278: 47-52.

83. Serra B, Benito B, Agui L, Reviejo A J, Pingarron J M. Graphite-teflonperoxidase composite electrochemical biosensors. A tool for the wide detection of phenolic compounds. Electroanalysis. 2001; 13: 693-700.

84. Mailley P, Cummings E A, Mailley S C, Eggins B R, Adams M E, Cosnier S. Composite carbon paste biosensor for phenolic derivatives based on in situ electrogenerated polypyrrole binder. Anal.Chem. 2003; 75: 5422-5428.

85. Marco M P, Barceló D. Environmental applications of analytical biosensors. Meas. Sci. Technol. 1996; 7: 1547–1562.

86. Bassi A S, Tang D, Lee E, Zhu J X, Bergougnou M A. Biosensors in environmental and bioprocess monitoring and control. Food Technol Biotechnol.1996; 34: 9-22.

87. Evtyugin GA, Stoikova E E. Electrochemical biosensors based on dendrimers. J Anal Chem. 2015; 70: 517-534.

88. Somerset V. (n.d.). Environmental Biosensors Edited by Vernon Somerset.

89. Soldatkin O O, Shelyakina M K, Arkhypova V N, Soy E, Kirdeciler S K, Ozansoy K B, Dzyadevych S V. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation. Nano Scl Res Lett. 2015; 10: 59.

90. Meiqing G, Hefeng W, Di H, Zhijun H, Qiang L, Xiaojun W, Jing C. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix, Science and Technology of Advanced Materials, 2014; 15: 035005, DOI: 10.1088/1468-6996/15/3/035005

91. Diaconu M, S Carmen, Litescu, G L Radu. Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sensor. Actuators. B. 2010; 145: 800–806.

92. Sarika C, Rekha K, Narasimhamurthy B. Laccase based amperometric biosensor for industrial waste waters : A comparative study on covalent immobilization methods on gold electrode. IOSR-JAC. 2014; 7: 20–27.

93. Gomes A S S, Rebelo M J F. A new la11ccase biosensor for polyphenol determination. Sensors. 2003; 3: 166–175.

94. Yaropolov A I, Shleev S V, Morozova O V, Zaitseva E A, Marko-Varga G, Emneus J, Gorton L. An amperometric biosensor based on laccase immobilized in polymer matrices for determining phenolic compounds. J Anal Chem. 2005; 60: 624–628.

95. Vianello F, Cambria A, Ragusa S, Cambria M T, Zennaro L, Rigo A. A high

96. sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element. Biosens. Bioelectron. 2004; 20: 315–321.

97. Gutierrez-Sanchez C, Shleev S, Lacey G, A.L.Third-generation oxygen amperometric biosensor based on Trametes hirsuta laccase covalently bound to graphite electrode.Chem. Pap. 2014 pp 1-4. DOI: 10.2478/s11696-014-0595-x

98. Fernandes S C, De Oliveira I R W Z, Fatibello-Filho O, Spinelli A, Vieira I C. Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sens. Actuators B Chem. 2008; 133: 202–207.

99. Nazari M, Kashanian S, Rafipour R. Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015; 145: 130–138.

100. Santhiago M, Vieira I C. L-Cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryzae. Sens. Actuators B Chem. 2007; 128: 279–285.

101. Chen X, Li D, Luo L, Ullah N, Wei Q. Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor. Appl. Surf. Sci. 2015; 328: 444–452.

102. Lepore M, M Portaccio. Optical detection of different phenolic compounds by means of a novel biosensor based on sol-gel immobilized laccase. Biotech. Appl. Biochem. 2016. doi: 10.1002/bab.1551

103. Abdullah J, Ahmad M, Heng L Y, Karuppiah N, Sidek H. An Optical Biosensor based on Immobilization of Laccase and MBTH in Stacked Films for the Detection of Catechol. Sensors, 2007; 7: 2238-2250.

104. Setti L, Giuliani S, Spinozzi G, Pifferi P G. Laccase catalyzed- oxidative of 3-methyl 2- benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb. Technol. 1999; 25: 285–289.

105. Cabaja J, Agnieszka J, Karol M, Agnieszka Åš, Jadwiga S. Optical biosensor for permanent monitoring of phenol derivatives in water solutions. Chemical Engineering Transactions 2016; 47:

106. Zhang Y, Tan C, Fei R, Liu X, Zhou Y, Chen J. Sensitive chemi luminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase. Anal. Chem. 2014; 86: 1115–1122.

107. Mbouguena J K, Ngamenib E, Alain W. Quaternary ammonium functionalized clay film electrodes modified with polyphenol oxidase for the sensitive detection of catechol. Biosensor. Bioelectron. 2007; 23: 269–275.

108. Bai X, Gu H, Chen W, Shi H, Yang B, Huang X. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application. Appl. Biochem. Biotechnol. 2014; 173: 1097– 1107.

109. Vedrine C, Fabiano, Tran-Minh C. Amperometric tyrosinase based biosensor using an electrogeneratedpolythiophene film as an entrapment support. Talanta. 2003; 59: 535-44.

110. Campuzano S, Serra B, Pedrero M, Villena F J, Pingarron J M. Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors. Analytica Chimica Acta. 2003; 494: 187–197.

111. Wang B, Zhang J, Dong S. Silica sol-gel composite film as an encapsulation matrix for the construction of an amperometric tyrosinase-based biosensor. Biosens Bioelectron. 2000; 15: 397-402.

112. Pena N, Reviejo A J, Pingarron J M. Detection of phenolic compounds in flow systems based on tyrosinase-modified reticulated vitreous carbon electrodes.Talanta. 2001; 55:179-87.

113. Onnerfjord P, Emneus J, Marko-Varga G, Gorton L, Ortega F, Domınguez E. Tyrosinase graphite-epoxy based composite electrodes for detection of phenols. Biosens Bioelectron. 1995; 10: 607-619.

114. Zapp E, Brondani D, Vieira I C, Scheeren C W, Dupont J, Barbosa A M J. Biomonitoring of methomyl pesticide by laccase inhibition on sensor containing platinum nanoparticles in ionic liquid phase supported in montmorillonite. Sens. Actuators B Chem. 2011; 155: 331–339.

115. Apetrei C, Rodríguez-méndez M L, Saja J A D. Amperometric tyrosinase based biosensor using an electropolymerized phosphate- doped polypyrrole film as an immobilization support Application for detection of phenolic compounds. Electrochimica Acta. 2011; 56: 8919–8925.

116. Wang S, Tan Y, Zhao D, Liu G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens Bioelectron. 2008; 23: 1781–7.

117. Yildiz H B, Castillo J, Guschin D A, Toppare L, Schuhmann W. Phenol biosensor based on electrochemically con-trolled tyrosinase in a redox polymer. Microchimacta. 2007; 159: 27–34.

118. Böyükbayram A E, Kiralp S, Toppare L, Yaǧci Y. Preparation of biosensors by immobilization of polyphenol oxidase in conducting copolymers and their use in determination of phenolic compounds in red wine. Bioelectrochemistry. 2006; 69: 164–171.

119. Li Y F, Liu Z M, Liu Y L, Yang Y H, Shen G L, Yu R Q. A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles. Anal Biochem. 2006; 34: 3–40.

120. Liu Z, Liu Y, Yang H, Yang Y, Shen G, Yu R. A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Analytica Chimica Acta. 2005; 533: 3–9.

121. Tembe S, Inamder S, Haram S, Karvee M D, Souza S F. Electrochemical biosensor for catechol using agarose-guargum entrapped tyrosinase. J Biotechnol.2007; 128: 80–85.

122. Apetrei C, Alessio P, Constantino C J L, De Saja J A, Rodriguez- Mendez M L, Pavinatto F J, Oliveira O N. Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants. Biosen. Bioelectron. 2011; 26: 2513–9.

123. Zhao J, Wu D, Zhi J. A novel tyrosinase biosensor based on biofunctional ZnO nanorod microarrays on the nanocrystalline diamond electrode for detection of phenolic compounds. Bioelectrochem. 2009; 75: 44–9.

124. Abdullah J, Ahmad M, Karuppiah N, Heng L Y, Sidek H. Immobilization of tyrosinase in chitosan film for an optical detection of phenol. Sensa Actuat B: Chem. 2006; 114: 604–609.

125. Fiorentino D, Gallone A, Fiocco D, Palazzo G, Mallardi A. Mushroom tyrosinase in polyelectrolyte multilayers as an optical biosensor for o-diphenols. Biosens Bioelectron. 2010; 25: 2033–7.

126. Silletti S, Rodio G, Pezzotti G, Turemis M, Dragone R, Frazzoli C, Giardi M T. An optical biosensor based on a multiarray of enzymes for monitoring a large set of chemical classes in milk. Sens Actuat B: Chem. 2015; 215: 607–617.

127. Eunji J, Son K J, Kim J, Won-Gun K. Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots. Analyst. 2010; 11: 2745-3012.

128. Oktem H A, Senyurt O, Eyidogan F I, Bayrac C, Yilmaz R. Development of Laccase based paper biosensor for the detection of phenolic compounds. J. Food Agric Environ. 2012; 10: 1030-1034.

129. Alkasir R S J, Ornatska M, Andreescu S. Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem. 2012; 84: 9729-9737.

130. Spink C, Wadso I. Calorimetry as an analytical tool in biochemistry and biology. Meth. Biochem. Anal. 1976; 23: 1–159.

131. Grime J K. Analytical Solution Calorimetry. Wiley, New York. 1985.

132. Mosbach K, Danielsson B. An enzyme thermistor. Biochim. Biophys. Acta. 1974; 364: 140–145.

133. Xie B, Tang J. Ulla W, Gillis J, Lo G, Frieder S, Danielsson B. Hybrid biosensor for simultaneous electrochemical and thermometric detection. Anal. Lett. 2006; 30:

134. Imabayashi S, Kong Y, Watanabe M. Amperometric biosensor for polyphenol peroxidase immobilized on gold electrodes. Electroanal. 2001; 13: 408-412.

135. Parellada J, Narváez A, Domínguez E, Katakis I. A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: binder paste electrodes. Biosens Bioelectron. 1997; 12: 267-75.

136. Rogers K R. Recent advances in biosensor techniques for environmental monitoring .Mol. Electron. Anal. Chem. 2006; 568: 222-231.

137. Freire R S, Duran N, Kubota L T. Development of a laccasebased flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft E1 paper mill effluent. Anal. Chem. Acta. 2002; 463: 229- 238.

138. Domínguez A, Gómez J, Lorenzo M, Sanroman A. Enhanced production of laccase activity by trametes versicolor immobilized into alginate beads by the addition of different inducers. World J. Microb. Biotechnol. 2007; 23: 367-373.

139. Ghindilis A L, Krishnan R, Atanasov P, Wilkins E. Flow-through Amperometric immunosensor: Fast ‘sandwich’ scheme immunoassay. Biosens. Bioelectron. 1997; 12: 415-423.

140. Russell I M, Burton S G.The development of an immo-bilized enzyme bioprobe for the detection of phenolic pollutants in water. Anal Chim Acta.1999; 389: 161–170.

141. Rahman A, Noh H, Shim Y. Direct electrochemistry of laccase immobilized on Au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor. Anal. Chem. 2008; 80: 8020–8027.

Article Metrics

170 Absract views 203 PDF Downloads 373 Total views

Related Search

By author names

Citiaion Alert By Google Scholar