Research Article | Volume: 5, Issue: 3, May-June, 2017

Screening and optimization of culture conditions of Nannochloropsis gaditana for omega 3 fatty acid production

S. Abirami S. Murugesan V. Sivamurugan S. Narender Sivaswamy   

Open Access   

Published:  Jun 19, 2017

DOI: 10.7324/JABB.2017.50303

Omega-3 fatty acids are essential fatty acids which are necessary for human health obtained only through diet. The three types of omega-3 fatty acids are involved in human physiology are alpha linolenic acid found in plant oils (ALA), eicosapentaenoic acid, and docosahexaenoic acid (EPA; DHA) both are commonly found in biological sources of marine origin. Marine algae and phytoplankton are primary sources of omega-3 fatty acids. Among the microalgae, Nannochloropsis have been identified for the high EPA content. It is very important to reduce the economic value of the range of products, fuel to pharma from the high lipid productivity strains. In the present study, we have explored a simple preliminary screening method by enrichment technique for selecting oleaginous microbes and optimized several culture parameters with maximum algal growth observed when cultured in f/2 media and at optimal temperature 25 ÌŠ C. Further high yield of biomass and lipid content with 8.6 g/L and 0.17 g/dry wt (17%) respectively were achieved when using urea as an economical nitrogen source. 0.9% EPA was achieved from N.gaditana cultivated in laboratory conditions. This study paved for future opportunities of large scale production of omega 3 fatty acids from Nannochloropsis gaditana and suggested further optimization of culture conditions in photobioreactor systems would yield maximum omega 3 fatty acids in commercialization aspects.

Keyword:     Nannochloropsis gaditanaoptimizationomega 3 fatty acidsEPA.


Abirami S, Murugesan S, Sivamurugan V and Narender Sivaswamy S. Screening and optimization of culture conditions of Nannochloropsis gaditana for omega 3 fatty acid production. J App Biol Biotech. 2017; 5 (03): 013-017.

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Tran, H.L. Kwon, J.S. Kim, Z.H. Oh, Y. Lee, C.G. Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572 Biotechnol. Bioprocess Eng. 2010; 15: 277–284.

2. Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technology. 2012; 24(6): 128–130.

3. Thangapandi Marudhupandi, Ramamoorthy Sathishkumara, Thipramalai Thankappan Ajith Kumara. Heterotrophic cultivation of Nannochloropsis salina for enhancing biomass and lipid production. Biotechnology Reports. 2016; 10: 8–16.

4. Harith, Z.T., Yusoff, F. M., Mohamed, M. S., Mohamed Din, M. S. and Ariff, A. B., Effect of different flocculants on the flocculation performance of microalgae, Chaetoceros calcitrans, cells, African Journal of Biotechnology. 2009, 8 (21): 5971-5978

5. Tang Y, Zhang Y, Rosenberg JN, Betenbaugh MJ, Wang F. Optimization of One-Step In Situ Transesterification Method for Accurate Quantification of EPA in Nannochloropsis gaditana. Appl. Sci. 2016, 6, 343.

6. Asfouri Nadia Yasmine, Djalt Houari Sarra, Maroc Fatma, Lamara Sid-Ahmed Chawki, Baba Hamed Mohammed Bey, Abi-AyadSidi-Mohammed El-Amine. Cultivation of marine microalga Nannochloropsis gaditana under various temperatures and nitrogen treatments: effect on growth, lipid and pigment content. Int. J. Biosci. 2017; 10(3): 209-216.

7. Andersen R.A. Algal culturing techniques. Elsevier Academic Press, London. 2005, p. 578.

8. Iyengar M., Desikachary OP, Volvocales TV. I.C.A.R. Monograph. New Delhi. 1981; pp. 525

9. Li SL, Lin Q, Li XR, Xu H, Yang YX, Qiao DR, Cao Y. Biodiversity of the oleaginous microorganisms in Tibetan plateau, Braz J Microbiol. 2012 Apr; 43(2):627-34. doi: 10.1590/S1517-83822012000200026

10. Guillard, R.R.L. Culture of phytoplankton for feeding marine invertebrates. pp 26-60. In Smith W.L. and Chanley M.H (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, USA . 1975.

11. Lananan F, Jusoh A, Ali N, Lam SS, Endut A. Effect of Conway Medium and f/2 Medium on the growth of six genera of South China Sea marine microalgae. Bioresour Technol. 2013 Aug;141:75-82. doi: 10.1016/j.biortech.2013.03.006.

12. Navid R. Moheimani, Mark P. McHenry, Karne de Boer, Parisa A. Bahri. Biomass and Biofuels from Microalgae, Advances in Engineering and Biology. 2015.

13. Ferriols VMEN, Aguilar RO. Efficiency of various flocculants in harvesting the green microalgae Tetraselmis tetrahele (Chlorodendrophyceae: Chlorodendraceae). AACL Bioflux. 2012, 5 (4).

14. Wiltshire, K.H., Boersma, M., Möller, A. et al. Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae). Aquatic Ecology. 2000 34: 119. doi:10.1023/A:1009911418606

15. Ranjith Kumar R., Hanumantha Rao P., and Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res, 2015; 2: 61.

16. XM Shi, HJ Liu, XW Zhang, F Chen. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Proc. Biochem. 1999; 34: 341–347.

17. Fang X., Wei C., Zhao-Ling C., Fan O. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J. Appl. Phycol., 2004; 16: 499–503.

18. A. Singh, Ward OP. Production of high yields of docosahexaenoic acid by Thraustochytrium roseum ATCC 28210. J. Ind. Microbiol. Biotechnol., 1996; 16(6): 370–373.

19. Wu QY, Yin S, Sheng GY, Fu JM. A comparative study of gases generated from stimulant thermal degradation of autotrophic and heterotrophic Chlorella Prog. Nat. Sci. 1992; 3: 435–440.

20. Arumugam M, Agarwal A, Arya MC, Ahmed Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus sp. Bioresour Technol. 2013; 131: 246-9. doi: 10.1016/j.biortech.2012.12.159.

21. Binaghi, L., Lodi, A., Carvalho, J. C. M. and Converti, A. 2005. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243: 217–224

22. Torre P, Sassano CEN, Sato S, Converti A., Gioielli LA and Carvalho JCM. Fed-batch addition of urea for Spirulina platensis cultivation thermodynamics and material and energy balances. Enzyme Microl and Technol. 2003; 33: 698 – 707.

23. Fidalgo, J.P., Cid, A., Torres, E., Suken, A. and Herrero, C. Effect of nitrogen source and growth on proximate biochemical composition, lipid classes and fatty acid profile of marine microalga Isochrysis galbana. Aquaculture. 1998; 166(1-2): 105 – 116

24. Hu HH, Gao KS. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources Biotechnol. Lett., 2003; 25 :421–425.

25. Hoshida, H., Ohira, T., Minematsu, A. et al. Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2concentrations. J Appl Phycol. 2005; 17: 29. doi:10.1007/s10811-005-5512-9

26. Li YJ, Fei XW, Deng XD. Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum Biomass Bioenergy. 2012; 42: 199–211.

27. Selvakumar P, Umadevi K. Mass Cultivation of Marine Micro alga Nannochloropsis gaditana KF410818 Isolated from Visakhapatnam offshore and Fatty Acid Profile Analysis for Biodiesel Production, J. Algal Biomass Utln. 2014; 5 (1): 28–37.

Article Metrics
106 Views 58 Downloads 164 Total



Related Search

By author names

Similar Articles