Research Article | Volume: 5, Issue: 2, March-April, 2017

Phenotypic and genotypic diversity of Xanthomonas axonopodis pv. manihotis causing bacterial blight disease of cassava in Kenya

Mary N. Chege Fred Wamunyokoli Joseph Kamau Evans N. Nyaboga   

Open Access   

Published:  Mar 20, 2017

DOI: 10.7324/JABB.2017.50206
Abstract

Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava. There is no information available on the morphological and genetic variability of Xam isolates from Kenya. The aim of this study therefore, was to determine the diversity of Xam isolates from different cassava growing regions of Kenya using phenotypic characteristics and repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR). Thirty three isolates were recovered from infected cassava leaf samples collected from farmers’ fields in cassava growing regions. The dendrogram generated from analysis of phenotypic characteristics of the isolates produced two major clusters at 75% similarity level. Analysis of 19 isolates with repetitive extragenic palindromic (rep) primers yielded characteristic fingerprint pattern with bands ranging between 400 and 2000 bp in size and their numbers ranged from 1 to 6 bands per isolate. Cluster analysis using unweighted pair group method with arithmetic averages (UPGMA) did not reveal any significant differences in clustering and relationship to the geographical origin, with exception of a single isolate that had unique fingerprints. These findings indicate that Xam population in Kenya evolved from the same origin and is a uniform population, and this may prove useful in future breeding programmes.


Keyword:     Cassava bacteria blight Xanthomonas axonopodis pv. manihotis phenotypic characteristics genetic diversity.


Citation:

Chege MN, Wamunyokoli F, Kamau J, Nyaboga EN. Phenotypic and genotypic diversity of Xanthomonas axonopodis pv. manihotis causing bacterial blight disease of cassava in Kenya. J App Biol Biotech. 2017; 5 (02): 038-044. DOI: 10.7324/JABB.2017.50206

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. FAO. FAOSTAT statistical database, agriculture data. 2013. Available online at: http://apps.fao.org.

2. Verdier V, Restrepo S, Mosquera G, Jorge V, Lopez C. Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis-cassava interaction. Plant Molecular Biology. 2004; 56(4): 573-584.

3. Ogunjobi AA. Molecular variation in population structure of Xanthomonas axonopodis pv. manihotis in the south eastern .

Nigeria. African Journal of Biotechnology. 2006; 5(20): 1868-1872.

4. Jorge V, Fregene M, Vélez CM, Duque MC, Tohme J, Verdier V. QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theoretical and Applied Genetics. 2001; 102(4): 564-571.

5. Restrepo S, Duque MC, Verdier V. Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathology. 2000; 49(6): 680-687.

6. Lozano JC. Cassava bacterial blight: a manageable disease. Plant Disease. 1986; 70: 1089-1093.

7. McDonald BA, Linde C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica. 2002; 124: 163-180.

8. Dixon AG, Ngeve JM, Nukenine EN. Genotype × environment effects on severity of cassava bacterial blight disease caused by Xanthomonas axonopodis pv. manihotis. European Journal of Plant Pathology. 2002; 108(8): 763-770.

9. Ma XL, Kong P, You MP, Li H, Sivasithamparam K, Barbetti MJ. Molecular variation among isolates belonging to eight races of Phytophthora clandestina. Australasian Plant Pathology. 2009; 38: 608-616.

10. Miesfeld RL. Rapid amplification of DNA. In Applied Molecular Genetics. A John Wiley & Sons, INC Publication; 1999.

11. Verdier V, Boher B, Maraite H, Verdier V, Geiger J. Pathological and molecular characterization of Xanthomonas campestris strains causing diseases of cassava (Manihot esculenta). Applied and Environmental Microbiology. 1994; 60(12): 4478-4486.

12. Restrepo S and Verdier V. Geographical Differentiation of the Population of Xanthomonas axonopodis pv. manihotis in Colombia. Applied and Environmental Microbiology, 1997. 63(11): 4427-4434.

13. Louws FJ, Fulbright DW, Stephens CT, de Bruijn FJ. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology. 1994; 60(7): 2286-2295.

14. Cruz CV, Ardales EY, Skinner DZ, Talag J, Nelson RJ, Louws FJ, Leach JE. Measurement of haplotypic variation in Xanthomonas oryzae pv. oryzae within a single field by rep-PCR and RFLP analyses. Studies. 1996; 15: 18.

15. Cubero J, Graham JH. Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Applied and Environmental Microbiology. 2002; 68(3): 1257-1264.

16. Verdier V, Mosquera G, Assigbétsé K. Detection of the cassava bacterial blight pathogen, Xanthomonas axonopodis pv. manihotis, by polymerase chain reaction. Plant Disease. 1998. 82(1): 79-83.

17. Ogunjobi AA, Fagade OE, Dixon AGO. Physiological studies on Xanthomonas axonopodis pv. manihotis (Xam) strains isolated in Nigeria. Advances in Biological Research. 2008; 2(5-6): 90-96.

18. Bradbury JF. Identification and characteristics of Xanthomonas manihotis. In Terry, ER; Persley, GJ; Cook, SCA (edxs.). Workshop on cassava bacterial blight in Africa, Past, Present and Future (1978, Ibadan, Nigeria). Report. 1978.

19. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. European Journal of Applied Microbiology and Biotechnology. 1978; 5(2): 123-127.

20. Bradbury JF. Identification et Caractéristiques de Xanthomonas manihotis. In: Terry, E.R., Persley, G.J. and Cook, S.C.A., Eds., La Bactériose du Manioc en Afrique: Le Passé, le Présent, L'avenir: Compte Rendu du Séminaire Interdisciplinaire Qui S'est Tenu à L'IITA, Ibadan, Nigéria, du 26 Au 30 Juin 1978, Parrainé Par le Centre de Recherche Pour le Developpement International, Ottawa, Canada, et L'Institut International D'agriculture Tropicale, Ibadan, Nigeria, Natural Resources Institute, 1979; p. 1-4..

21. Fahy PC, and Persley GJ. Plant bacterial diseases. A diagnostic guide. Academic Press Australia; 1983.

22. Louws FJ, Bell J, Medina-Mora CM, Smart CD, Opgenorth D, Ishimaru CA, Fulbright DW. rep-PCR-mediated genomic fingerprinting: a rapid and effective method to identify Clavibacter michiganensis. Phytopathology. 1998; 88(8): 862-868.

23. Verdier V, Restrepo S, Mosquera G, Jorge V, Lopez C. Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis-cassava interaction. Plant Molecular Biology. 2004. 56(4): 573-584.

24. Trujillo CA, Ochoa JC, Mideros MF, Restrepo S, López C, Bernal A. A complex population structure of the cassava pathogen Xanthomonas axonopodis pv. manihotis in recent years in the Caribbean Region of Colombia. Microbial Ecology. 2014; 68(1): 155-167.

25. McGuire RG. and Jones JB. Recovery of Xanthomonas campestris pv. vesicatoria from tomato seed. Plant In: Pathogenic Bacteria, Current Plant Science and Biotechnology in Agriculture, Springer. 1987, p. 768.

26. Rodriguez S, Stapleton JJ, Civerolo EL. Xanthomonas campestris involved in Mexican lime bacteriosis in Colima, Mexico. In: Pathogenic Bacteria, Current Plant Science and Biotechnology in Agriculture, Springer 1987, p. 658-662.

27. Willems A, Gillis M, Kersters K, Van Den Broecke L, De Ley J. Transfer of Xanthomonas ampelina Panagopoulos 1969 to a New Genus, Xylophilus gen. nov., as Xylophilus ampelinus. (Panagopoulos 1969) comb. nov. Internal Journal of Systemic Bacteriology. 1987; 37(4): 422-430.

28. Adhikari TB, Mew TW, Leach JE. Genotypic and phenotypic diversity in Xanthomonas oryzae pv. oryzae in Nepal. Phytopathology. 1999; 89: 687-694.

29. Kumar A, Sarma YR, Anandaraj M. Evaluation of genetic diversity of Ralstonia solanacearum causing bacterial wilt of ginger using REP-PCR and PCR-RFLP. Current Science. 2004; 87: 1555-1561.

30. Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos P, Kersters K. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology. 1996; 142(7): 1881-1893.

31. Restrepo S, Velez CM, Verdier V. Measuring the genetic diversity of Xanthomonas axonopodis pv. manihotis within different fields in Colombia. Phytopathology. 2000; 90: 683-690.

32. Restrepo S, Verdier V. Geographical differentiation of the population of Xanthomonas axonopodis pv. manihotis in Colombia. Applied and Environmental Microbiology. 1997; 63(11): 4427-4434.

33. Restrepo S, Velez M, Duque C, Verdier V. Genetic structure and population dynamics of Xanthomonas axonopodis pv. Manihotis in Colombia from 1995 to 1999. Applied and Environmental Microbiology. 2004; 70(1): 255-261.

Article Metrics
199 Views 64 Downloads 263 Total

Year

Month

Related Search

By author names

Similar Articles