Rhizobia, Gram-negative bacilli are capable of fixing atmospheric nitrogen in symbiotic association with leguminous roots. These were classified earlier on the basis of morphology, physiology and biochemical characters. But with the dawn of new era of molecular approaches, various evolutionary chronometers have led to re-classification of these soil bacteria. Chickpea is the most important leguminous crop of arid and semi-arid regions of world. The rhizobia strains which nodulate chickpea exhibit genomic heterogeneity. The various molecular techniques such as DNA-DNA hybridization, RAPD-PCR, REP (repetitive extragenic palindrome) PCR, ERIC (enterobacterial repetitive intergeneric consensus) and BOX element or the finger printing of rhizobia genomes using ribosomal genes (16S, 23S or 16S-23S inter generic spacer - IGS), DAPD (direct amplified polymorphic DNA) are regularly used to identify, differentiate and characterize rhizobia infecting chickpea. Though, the ribosomal RNA is conserved but it exhibits variability in some of the domains and this makes ribosomal gene sequence (16S and 23S DNA) an optimum choice for deducing phylogenetic and evolutionary relationship among chickpea rhizobia. But 16S r RNA sequence is not sufficient enough to distinguish the strains of one species or even closely related species. The additional genes like nod genes, nif genes, glutamine synthetase and other housekeeping genes have also been used in combination to 16S rRNA to study the evolutionary relationship among these rhizobia. This has led to proper taxonomy and systematics of the rhizobia group, with the description of new genera up to the level of species and sub species. The chickpea rhizobia have been grouped under genus Mesorhizobium with several species such as M. ciceri, M. mediterraneum, M amorphae, M. tianshanense, M. loti, M. huakuii, M. opportunistum and M. muleiense.
Suneja P, Dudeja SS, Dahiya P. Deciphering the phylogenetic relationships among rhizobia nodulating chickpea: A Review. J App Biol Biotech. 2016; 4 (03): 061-070. DOI: 10.7324/JABB.2016.40310
1. Martinez- Romero E, Caballero-Mellado J. Rhizobium phylogenies and bacterial genetic diversity. Critical Review in Plant Science.1996; 15: 113-140.
2. Broughton WJ, Perret X. Genealogy of legume-Rhizobium symbiosis. Current Opinion in Plant Biology .1999; 2: 305-311.
3. Jarvis B D W, Van Berkum P, Chen W X, Nour S M, Fernandez M P, Cleyet-Marel J C, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen nov. International Journal of Systematic Bacteriology.1997;47:895-898.
4. Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Micrbiological Research. 2014; 169: 2-17.
5. Graham P H. Selective medium for growth of Rhizobium. Journal of Applied Microbiology. 1969; 17: 769-770.
6. Josey D P, Beynon J L, Johnston A W B, Beringer J E. Strain identification in Rhizobium using intrinsic antibiotic resistance. Journal of Applied Bacteriology. 1979; 46: 343-350.
7. van Rossum D V, Schuurmans F P, Gillis M, Huyotcha A, Verseveld H W V, Stouthamer A H, Boogerd F. Genetic and phenotypic analysis of Bradyrhizobium strain nodulating peanut (Arachis hypogaea L.) roots. Applied and Environment Microbiology.1995; 61: 1599-1609.
8. Chaudhary P, Khurana A L, Dudeja S S. Heterogeneity of rhizobia isolated from chickpea nodulation variants. Indian Journal of Microbiology. 2002; 42: 195-199.
9. Noel K D, Brill W J. Diversity and dynamics of indigenous Rhizobium japonicum populations. Applied and Environment Microbiology. 1980; 40(5): 931-938.
10. Pinero D, Martinez E, Selander R K. Genetic diversity and relationships among isolates of Rhizobium leguminosarum bv. phaseoli. Applied and Environment Microbiology. 1988; 55: 2825-2832.
11. Moreira F M S, Gillis M, Pot B, Kersters K, Franco A A. Characterization of rhizobia isolated from different divergence groups of tropical leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. System and Applied Microbiology. 1993; 16: 135-146.
12. Leung K, Strain S R, de-Bruijin F J, Bottomley P J. Genotypic and phenotypic comparison of chromosomal types within an indigenous soil population of Rhizobium leguminosarum bv. Trifolii. Applied and Environment Microbiology. 1994b; 60(2): 416-426.
13. Vincent J M, Humphrey B. Taxonomically significant group antigens in Rhizobium. Journal of General Microbiology.1970; 63: 379-382.
14. Dadarwal K R, Prabha S, Tauro, P. Efficiency and antigenic characteristics of green Gram (Vigna radiata bv. aureus) rhizobia. Indian Journal of Experimental Biology.1979; 17: 668-670.
15. Gaur YD, Sen AN. Cross inoculation group specificity in Cicer-Rhizobium symbiosis. New Phytologist. 1979; 83: 745-754.
16. Kingsley M T, Bohlool B. Characterization of Rhizobium sp. (Cicer arietinum L.) by immunofluorescence, immunodiffusion and intrinsic antibiotic resistance. Canadian Journal of Microbiology. 1983; 29: 518-526.
17. Woese C, Fox G. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Procedings of National Academy of Sciences of the United States of America. 1977; 74(11): 5088-5090.
18. Laguerre G, Louvrier P, Allard M R ,Amarger N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum bv. viciae for nodulation of host legumes. Applied and Environment Microbiology.2003; 69: 2276-2283.
19. Sikora S., Redzepovic S. Genotypic characterisation of indigenous soybean rhizobia by PCR-RFLP of 16S rDNA, rep-PCR and RAPD analysis. Food Technology and Biotechnology. 2003; 41: 61-67.
20. Moschetti G, Peluso A, Protopapa A, Anastasio M, Pepe O, Defez R. Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. System and Applied Microbiology. 1995; 28: 619-631.
21. Blazinkov M, Sikora S, Uher D, Macesic D, Redzepovic, S. Genotypic characterisation of indigenous Rhizobium leguminosarum bv. viciae field population in Croatia. Agriculturae Conspectus Scientificus. 2007; 72: 153-158.
22. Dudeja S S, Singh P C. High and low nodulation in relation to molecular diversity of chickpea mesorhizobia in Indian soils. Archives of Agronomy and Soil Science. 2008; 54: 109-120.
23. Nandwani R, Dudeja S S. Molecular diversity of a native mesorhizobial population nodulating chickpea (Cicer arietinum L.) in Indian soils. Journal of Basic Microbiology, 2009; 49(5):463-70.
24. El-Akhal M R, Rincon A, Mourabit N E, Pueyo J J, Barrijal S. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (Arachis hypogaea L.) grown in Moroccan soils. Journal of Basic Microbiology. 2009; 49(5):415-25.
25. Elboutahiri N, Thami-Alami1 I, Zaid E, Udupa S M. Genotypic characterization of indigenous Sinorhizobium meliloti and Rhizobium sullae by rep-PCR, RAPD and ARDRA analyses. African Journal of Biotechnology. 2009; 8(6): 979-985.
26. Rashid M H, Sattar M A, Uddin M I, Young J P W. Molecular characterization of symbiotic root nodulating rhizobia isolated from lentil (Lens culinaris Medik.). Electronoic Journal Environment, Agriculture and Food Chemistrty. 2009; 8(8): 602-612.
27. Yadav A, Singh A L, Rai G K, Singh M. Assessment of molecular diversity in chickpea (Cicer arietinum L.) rhizobia and structural analysis of 16S rDNA sequences from Mesorhizobium ciceri . Polish Journal of Microbiology. 2013; 62(3): 253-262.
28. Rouhrazi K, Khodakaramian G.Phenotypiv and genotypic diversity of root-nodulating bacteria isolated from chickpea (Cicer arietinum L.) in Iran.Annals of Microbiology. 2015 ; 65:2219-2227.
29. Gnat S, MaÅ‚ek W , OleÅ„ska E, TroÅ›ciaÅ„czyk A, Wdowiak-Wróbel S, Kalita M, Wójcik M Insight into the genomic diversity and relationship of Astragalus glycyphyllos symbionts by RAPD, ERIC-PCR,and AFLP fingerprinting. Journal of Applied Genetics.2015; 56:551–554 DOI 10.1007/s13353-015-0285-6.
30. Lin T, Lin L, Zhang F.Review on Molecular Typing Methods of Pathogens.Open journal of medical microbiology. 2014; 4 :147-152.
31. Yang J K, Zhang W T, Yuan T Y, Zhou J C. Genotypic characteristics of the rrn operon and genome of indigenous soybean bradyrhizobia in cropping zones of China. Canadian Journal of Microbiology. 2006; 52(10): 968-976.
32. Yang C, Yang J, Li Y, Zhou J. Genetic diversity of root-nodulating bacteria isolated from pea (Pisum sativum) in subtropical regions of China. Science in China Series C-Life Science. 2008; 51: 854-862.
33. Zézé A, Mutch L A, Young J P. Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environment Microbiology. 2001;3(6):363-70.
34. Mutch L A, Young J P. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Molecular Ecology. 2004; 13(8): 2435-2444.
35. Ribeiro R A, Barcellos F G, Thompson F L, Hungria M. Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Research in Microbiology. 2009; 160(4): 297-306.
36. Weir B S. The current taxonomy of rhizobia. New Zealand rhizobia webstie. (http://www.rhizobia.co.nz/taxonomy/rhizobia.html). Last updated: 14 September, 2011.
37. Weir B S. The current taxonomy of rhizobia. New Zealand rhizobia webstie. (http://www.rhizobia.co.nz/taxonomy/rhizobia.html). Last updated: 10 April, 2012.
38. Nour S M, Cleyet-Marel J C, Beck D, Effosse A, Fernandez M P. Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Canadian Journal of Microbiology.1994; 40: 345-354.
39. Tan Z Y, Xu X D, Wang E T, Gao J L, Martinez-Romero E, Chen W X. Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. International Journal of Systematic Bacteriology. 1997; 47: 874-879.
40. Tindall B J, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology. 2010; 60: 249-266.
41. Zhang J J , Liu T Y, Chen W F, Wang E T, Sui X H, Zhang X X ,et al. Mesorhizobium muleiense sp nov, nodulating with Cicer arietinum L. International Journal of Systematic and Evolutionary Microbiology. 2012; 62: 2737-2742.
42. Lupski J R, Weinstock G M. Short, interspersed repetitive repetitive DNA sequences in prokaryotic genome. Journal of bacteriology. 1992; 174:4525-4529.
43. Woese C R, Bacterial evolution. Microbiological Reviews. 1987; 51(2): 221-271.
44. Dubnau D, Smith I, Morell P, Marmur J. Gene conservation in Bacillus species I conserved genetic and nucleic acid base sequence homologies. Proceedings of National Academy of Science United States of America.1965; 54:491-498.
45. Clarridge J E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews. 2004; 17: 840- 862.
46. Nour S M, Cleyet-Marel J C, Normand P, Fernandez M P. Genomic heterogeneity of strains nodulating chickpea (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. International Journal of Systematic and Evolutionary Bacteriology.1995; 45: 640-648.
47. Chaudhary P, Dudeja S S, Khurana A L. Chickpea nodulation variants as a tool to detect the population diversity of chickpea rhizobia in soil. Physiology and Molecular Biology of Plants. 2001; 7: 47-54.
48. Laranjo M, Rodrigues R, Alho L, Oliveria S. Rhizobia of chickpea from Southern Portugal: Symbiotic efficiency and genetic diversity. Journal of Applied Microbiology. 2001; 90: 662-667.
49. Laranjo M, Branco C, Soares R, Alho L, Carvalho M D, Oliveria S. Comparison of chickpea rhizobia isolated from diverse Portuguese natural populations based on symbiotic effectiveness and DNA fingerprinting. Journal of Applied Microbiology. 2002; 92: 1043-1050.
50. Laranjo M, Machado J, Young J P W, Oliveira S. High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiology Ecology. 2004; 48: 101-107.
51. Maatallah J, Berraho E B, Munoz S, Sanjuan J, Lluch C. Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. Journal of Applied Microbiology. 2002; 93: 531-540.
52. L'taief B, Sifi B, Gtari M, Zaman-Allah M, Lachaâl M. Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Canadian Journal of Microbiology. 2007; 53(3):427-34.
53. Alexandre A, Brigido C, Laranjo M, Rodrigues S, Oliveira S. Survey of chickpea rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microbial Ecology. 2009; 58: 930-941.
54. Asgharzadeh A, Rafiee M, Kargar M, Asadi Rahmani H. Genetic diversity of chickpea- nodulating Mesorhizobium species native to Irania soils. Iraninan Journal of Soil Research.2013; 27(1): 121-129.
55. Rai R, Dash P K, Trilochan M, Singh A. Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Indian Journal of Experimental Biology. 2012; 50: 340-350.
56. Alexandre A, Laranjo M, Oliveira S. Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods. Microbial Ecology. 2006; 51(1): 128-136.
57. Rivas R, Laranjo M, Mateos P F, Oliveira S, Martinez-Molina E, Velazquez E. Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum, Letters in Applied Microbiology. 2007; 44: 412-418.
58. Laranjo M, Alexandre A, Rivas R, Velazquez E, Young J P, Oliveira S. Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiology Ecology. 2008; 66: 391-400.
59. Zhang J J, Yu T, Lou K, Mao P H, Wang E T, Chen W F. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Systematic and Applied Microbiology. 2014; 37(7): 520-524.
60. Peix A, Ramírez-Bahena M H, Velázquez E and Bedmar E J. Bacterial Associations with Legumes. Critical Reviews in Plant Sciences .2015; 34:1-3, 17-42, DOI: 10.1080/07352689.2014.897899.
61. Jordan D C. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic Bacteriology. 1982; 32: 136-139.
62. Young J P W, Crossman L, Johnston A, et al. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biology. 2006; 7: R34.
63. Rogel M A, Ormeno-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Systematic and Applied Microbiology. 2011; 34: 96-104.
64. Berrada H, Fikri-Benbrahim K. Taxonomy of the Rhizobia: current perspectives. British Microbiology Research Journal. 2014; 4(6): 616-639.
65. Laranjo M, Young J P W, Oliveria S. Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Systematic and Applied Micobiology. 2012; 35: 359-367.
66. Thrall P H, Murray B R, Watkin E, Woods M, Baker K, Burdon J J, Brockwell J. Bacterial partnerships enhance the value of native legumes in revegetation and rehabilitation of degraded agricultural lands. Ecology Management Restoration, Malden. 2001; 2: 233-235.
67. Kim D H, Kaashyap M, Rathore A, Das R R, Parupalli S, Upadhyaya H D, Gopalakrishnan S, Gaur P M, Singh S, Kaur J, Yasin M, Varshney R K. Phylogenetic diversity of Mesorhizobium in chickpea. Journal of Biosciences. 2014; 39(3): 513-517.
68. Armas-Capote N, Perez-Yepez J, Martinez-Hidalgo P, Garzon-Machado V, Del Arco-Aguilar M, Velazquez E, Leon-Barrios M. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Systematic and Applied Microbiology. 2014; 37: 140-148.
69. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, Kumari H, Jit S, Gupta S K, Khanna M, Lal R. Polyphasic approach of bacterial classification- An overview of recent advances. Indian Journal of Microbiology.2007; 47: 98-108.
70. Greenspan A, Kim D H,Chang P, Khan A W, Bergmann E M, Sanchez V,Vance L,Scharnagl K, Kaashyap, M, Yasin M, Kaur Singh S, Upadhyaya H D ,Gaur P M, Penmesta R V, Wettberg E V, Varshney R K, Cook D R . 2014; The impact of domestication on nitrogen fixation in chickpea: parrallel shifts in bacterial genome structure and host selectivity, Plant Animal Genome XII, Ag-Genomics Meeting.
Year
Month
Isolation and molecular characterization of endophytic bacteria associated with the culture of forage cactus (Opuntia spp.)
M. C. C. P. de Lyra, D. C. Santos, C. Mondragon-Jacobo, M.L.R.B. da Silva, A. C. E.S Mergulhão , E. Martínez-RomeroPhylogenetic analysis of some hard ticks from India using mitochondrial 16s rDNA
Harpreet Kaur, Shivani ChhillarBiosynthesis of biodegradable polymer by a potent soil bacterium from a stress-prone environment
Ningthoujam Chandani, Pranab Behari Mazumder, Amitabh BhattacharjeeScreening and identification of amylase producing strains of Bacillus
Kumar Pranay, Shree Ram Padmadeo, Vijay Jha, Birendra Prasad