Spatiotemporal proteome expression during banana fruit development and ripening: elucidation of molecular insights

Subhankar Mohanty Prashanth Suravajhala Giridara Kumar Surabhi   

Open Access   

Published:  Dec 03, 2024

DOI: 10.7324/JABB.2025.199158
Abstract

Banana is a highly perishable climacteric fruit, and its ripening process is notably fast, due to the modulation of several metabolic processes, including starch degradation, sugar accumulation, ethylene biosynthesis, cell wall modification, and others. However, most of the proteome studies on banana fruit are based on a single tissue type and are limited to either developmental or ripening stages. In contrast, the protein dynamics in the banana fruit during its development and ripening remain unclear. The function and morphology of each fruit tissue are different and ignoring the importance of tissue-specific studies obscures many specific functions. The current study focused on spatiotemporal proteome changes in banana peel and pulp tissues at several stages of fruit development and ripening. Most of the functionally categorized proteins were involved in the regulation of different biochemical and metabolic processes during banana ripening, i.e., starch and sugar metabolism, hormone regulation, cell wall modification, and transcription factors, representing the potential candidates involved in banana fruit development and ripening. We present a comprehensive banana fruit proteome data set by incorporating the expression of the proteins involved in diverse metabolic pathways, including two tissue types, and covering a range of fruit development and ripening stages. We have applied the bioinformatic algorithms to determine the interactions of identified proteins. Protein–protein interaction studies revealed that the two numbers of glycolysis pathway proteins namely, phosphoglucomutase and enolase, were found to interact more with other protein partners in the network. Our findings from this study not only provide an insight into the spatiotemporal modulations of the proteins during banana fruit development and ripening process but also open up the window for further validation of the identified key proteins to assign individual roles in fruit ripening and shelf-life, either through RNAi or genome editing tools.


Keyword:     Fruit ripening protein-protein interactions cell wall modification transcription factors sugar metabolism ethylene signaling


Citation:

Mohanty S, Suravajhala P, Surabhi GK. Spatiotemporal proteome expression during banana fruit development and ripening: Elucidation of molecular insights. J Appl Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2025.199158

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Bhuiyan FR, Campos NA, Swennen R, Carpentier S. Characterizing fruit ripening in plantain and Cavendish bananas: a proteomics approach. J Proteom 2020;214:103632; doi: http://doi.org/10.1016/j. jprot.2019.103632

2. Wolf S, Mouille G, Pelloux J. Homogalacturonan methyl-esterification and plant development. Mol Plant 2009;2:851–60; doi: http://doi.org/10.1093/mp/ssp066

http://doi.org/10.1093/mp/ssp066

3. Jiang B, Ou S, Xu L, Mai W, Ye M, Gu H, et al. Comparative proteomic analysis provides novel insights into the regulation mechanism underlying papaya (Carica papaya L.) exocarp during fruit ripening process. BMC Plant Biol 2019;19(1):1–13; doi: http://doi.org/10.1186/s12870-019-1845-4

4. Lindo-García V, Giné-Bordonaba J, Leclerc C, Ubach D, Larrigaudiere C. The relationship between ethylene-and oxidative-related markers at harvest with the susceptibility of pears to develop superficial scald. Postharvest Biol Technol 2020;163:111135; doi: http://doi.org/10.1016/j.postharvbio.2020.111135

5. Wang X, Pan L, Wang Y, Meng J, Deng L, Niu L, et al. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Sci 2021;313:111084; doi: http://doi.org/10.1016/j.plantsci.2021.111084

http://doi.org/10.1016/j.plantsci.2021.111084

6. Gupta K, Wani HS, Razzaq A, Skalicky M, Samantara K, Gupta S, et al. Abscisic acid: role in fruit development and ripening. Front Plant Sci 2022;13:817500; doi: http://doi.org/10.3389/fpls.2022.817500

7. Inaba A, Liu X, Yokotani N, Yamane M, Lu WJ, Nakano R, et al. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit. J Exp Bot 2007;58(5):1047–57; doi: http://doi.org/10.1093/jxb/erl265

http://doi.org/10.1093/jxb/erl265

8. Jiang L, Kang, R, Feng L, Yu Z, Luo H. iTRAQ-based quantitative proteomic analysis of peach fruit (Prunus persica L.) at different ripening and postharvest storage stages. Postharvest Biol Technol 2020;164:111137; doi: http://doi.org/10.1016/jpostharvbio.2020.111137

9. Liu Z, Lv J, Liu Y, Wang J, Zhang Z, Chen W, et al. Comprehensive phosphoproteomic analysis of pepper fruit development provides insight into plant signalling transduction. Int J Mol Sci 2020;21(6):1962; doi: http://doi.org/10.3390/ijms21061962

10. Al Obaidi JR, Jamil NAM, Rahmad N, Rosli NHM. Proteomic andmetabolomic study of wax apple (Syzygium samarangense) fruit during ripening process. Electrophoresis 2018;39(23):2954–64; doi: http://doi.org/10.1002/elps.201800185

http://doi.org/10.1002/elps.201800185

11. Kok SY, Namasivayam P, Ee GCL, Ong-Abdullah M. Comparative proteomic analysis of oil palm (Elaeis guineensis Jacq.) during early fruit development. J Proteom 2021;232:104052; doi: http://doi.org/10.1016/j.jprot.2020.104052

12. Li L, Wu Q, Wang Y, Aghdam MS, Ban Z, Zhang X, et al. Systematically quantitative proteomics and metabolite profiles offer insight into fruit ripening behavior in Fragaria× ananassa. RSC Adv 2019;9(25):14093–108; doi: http://doi.org/10.1039/C9RA00549H

13. Hu H, Liu Y, Shi GL, Liu YP, Wu RJ, Yang AZ, et al. Proteomic analysis of peach endocarp and mesocarp during early fruit development. Physiol Plant 2011;142(4):390–406; doi: http://doi.org/10.1111/j.1399-3054.2011.01479.x

14. Ning T, Chen C, Yi G, Chen H, Liu Y, Fan Y, et al. Changes in homogalacturonan metabolism in banana peel during fruit development and ripening. Int J Mol Sci 2022;23(1):243; doi: http://doi.org/10.3390/ijms23010243

15. Shafiee R, Nahvi I, Emtiazi G. Bioconversion of raw starch to SCP by coculture of Cryptococcus aerius and Saccharomyces cerevisiae. J Biol Sci 2005;5(6):717–23.

16. Franscistt W, David FB, Robert MD. The estimation of the total soluble carbohydrate in cauliflower tissue. In: Witham FH, Blaydes DF, Devlin RM, (eds.). Experiment in plant phyisiology, Reinhold Camp, New York, NY, p 16, 1971.

17. Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B. Preparation of protein extracts from recalcitrant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis, Proteomics 2005;5(10):2497–507; doi: http://doi.org/10.1002/pmic.200401222

18. Ray JA, Kushnir MM, Bunker A, Rockwood AL, Meikle AW. Direct measurement of free oestradiol in human serum by equilibrium dialysis–liquid chromatography–tandem mass spectrometry and reference intervals of free estradiol in women. Clin Chim Acta 2012;413:1008–14; doi: http://doi.org/10.1016/j.cca.2012.02.028

http://doi.org/10.1016/j.cca.2012.02.028

19. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 2010;38:214–20; doi: http://doi.org/10.1093/nar/ gkq537

20. Yun Z, Li T, Gao H, Zhu H, Gupta VK, Jiang Y, et al. Integrated transcriptomic, proteomic, and metabolomics analysis reveals peel ripening of harvested banana under natural condition. Biomolecules 2019;(9):167; doi: http://doi.org/10.3390/biom9050167

http://doi.org/10.3390/biom9050167

21. Schmitz GJH, Freschi L, Ferrari RC, Peroni-Okita FHG, Cordenunsi- Lysenko BR. Exploring the significance of photosynthetic activity and carbohydrate metabolism in peel tissues during banana fruit ripening. Sci Hortic 2022;295:110811; doi: http://doi.org/10.1016/j.scienta.2021.110811

22. Schemberger MO, Stroka MA, Reis L, Los KKDS, de Araujo GAT, Sfeir MZT, et al. Transcriptome profiling of non-climacteric ‘yellow’ melon during ripening: insights on sugar metabolism. BMC Genomics 2020;21:262; doi: http://doi.org/10.1186/s12864-020-6667-0

23. Chin CF, Teoh EY, Chee MJY, Al-Obaidi JR, Rahmad N, Lawson T. Comparative proteomic analysis on fruit ripening processes in two varieties of tropical mango (Mangifera indica). Protein J 2019;38(6):704–15; doi: http://doi.org/10.1007/s10930-019-09868

http://doi.org/10.1007/s10930-019-09868

24. Umer MJ, Safdar LB, Gebremeskel H, Zhao S, Yuan P, Zhu H, et al. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression. Hort Res 2020;7(1):1–13; doi: http://doi.org/10.1038/s41438-020-00416-8

25. Tian X, Zhu LL, Yang N, Song J, Zhao H, Zhang J, et al. Proteomics and metabolomics reveal the regulatory pathways of ripening and quality in post-harvest kiwifruits. J Agric Food Chem 2021;69(2):824–35; doi: http://doi.org/10.1021/acs.jafc.0c05492

26. Li X, Li C, Sun J, Jackson A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem 2019;309:125617; doi: http://doi.org/10.1016/j.foodchem.(2019)12561

ttp://doi.org/10.1021/acs.jafc.0c05492

26. Li X, Li C, Sun J, Jackson A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem 2019;309:125617; doi: http://doi. org/10.1016/j.foodchem. (2019)125617

27. Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MI. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 2017;8:475; doi: http://doi.org/10.3389/fpls.2017.00475

28. Wang S, Liu J, Zhao T, Du C, Nie S, Zhang Y, et al. Modification of Threonine-1050 of SlBRI1 regulates BR signaling and increases fruit yield of tomato. BMC Plant Biol 2019;19(1):1–13; doi: http://doi.org/10.1186/s12870-019-1869-9

29. Choi HR, Baek MW, Cheol LH, Jeong CS, Tilahun S. Changes in metabolites and antioxidant activities of green ‘Hayward’ and gold ‘Haegeum’ kiwifruits during ripening with ethylene treatment. Food Chem 2022;384:132490; doi: http://doi.org/10.1016/j.foodchem.2022.132490

30. Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, et al. Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Phys 2007;143(3):1327– 46; doi: http://doi.org/10.1104/pp.106.092817

31. Zhuang X, Jiang J, Li J, Ma Q, Xu Y, Xue Y, et al. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J 2006;48(4):581–91; doi: http://doi.org/10.1111/j.1365-313X.2006.02898.x

http://doi.org/10.1111/j.1365-313X.2006.02898.x

32. Sieburth LE, Muday GK, King EJ, Benton G, Kim S, Metcalf KE, et al. SCARFACE encodes an ARF-GAP that is required for normal auxin efflux and vein patterning in Arabidopsis. Plant Cell 2006;18(6):1396–411; doi: http://doi.org/10.1105/tpc.105.039008

33. Zemlyanskaya EV, Omelyanchuk NA, Ubogoeva EV, Mironova VV. Deciphering auxin-ethylene crosstalk at a systems level. Int J Mol Sci 2018;19(12):4060; doi: http://doi.org/10.3390/ijms19124060

http://doi.org/10.3390/ijms19124060

34. Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases, BMC Plant Biol 2005;5:14; doi: http://doi.org/10.1186/1471-2229-5-14

35. Li T, Yun Z, Wu Q, Qu H, Duan X, Jiang Y. Combination of transcriptomic, proteomic, and metabolomic analysis reveals the ripening mechanism of banana pulp. Biomolecules 2019;9(10):523; doi: http://doi.org/10.3390/biom9100523

http://doi.org/10.3390/biom9100523

36. Xiao L, Li T, Jiang G, Jiang Y, Duan X. Cell wall proteome analysis of banana fruit softening using iTRAQ technology. J Proteom 2019;209:103506; doi: http://doi.org/10.1016/j.jprot.2019.103506

37. Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc Natl Acad Sci 2010;107(6):2413–8; doi: http://doi.org/10.1073/pnas.0909329107

http://doi.org/10.1073/pnas.0909329107

38. Ghosh S, Meli VS, Kumar A, Thakur A, Chakraborty N, Chakraborty S, et al. The N-glycan processing enzymes α-mannosidase and β-D-N-acetyl hexosaminidase are involved in ripening-associated softening in the non-climacteric fruits of capsicum. J Exp Bot 2011;62(2):571–82; doi: http://doi.org/10.1093/jxb/erq289

39. Zhao Y, Zhu X, Hou Y, Wang X, Li X. Effects of nitric oxide fumigation treatment on retarding cell wall degradation and delaying softening of winter jujube (Ziziphus jujuba Mill. cv. Dongzao) fruit during storage. Postharvest Biol Technol 2019;156:110954; doi: http://doi.org/10.1016/j.postharvbio.2019.110954

http://doi.org/10.1016/j.postharvbio.2019.110954

40. Huan C, An X, Yu M, Jiang L, Ma R, Tu M, et al. Effect of combined heat and 1-MCP treatment on the quality and antioxidant level of peach fruit during storage. Postharvest Biol Technol 2018;145:193– 202; doi: http://doi.org/10.1016/j.postharvbio.2018.07.013

41. Niu J, Shi Y, Huang K, Zhong Y, Chen J, Sun Z, et al. Integrative transcriptome and proteome analyses provide new insights into different stages of Akebia trifoliata fruit cracking during ripening. Biotechnol Biofuels 2020;13(1):1–18; doi: http://doi.org/10.3390/ijms23010243

42. Fan Z, Kuang J, Fu C, Shan W, Han Y, Xiao Y, et al. The Banana transcriptional repressor MaDEAR1 negatively regulates cell wall-modifying genes involved in fruit ripening. Front Plant Sci 2016;7:1021; doi: http://doi.org/10.3389/fpls.2016.01021

http://doi.org/10.3389/fpls.2016.01021

43. Chen S, Li Y, Zhao Y, Li G, Zhang W, Wu Y, et al. iTRAQ and RNA-Seq. analyses revealed the effects of grafting on fruit development and ripening of oriental melon (Cucumis melo L. var. makuwa). Gene 2021;766:145142; doi: http://doi.org/10.1016/j.gene.2020.145142

44. Kim J, Lee J, Hong Y, Lee EJ. Analysis of eight phytohormone concentrations, expression levels of ABA biosynthesis genes, and ripening-related transcription factors during fruit development in strawberry. J Plant Physiol 2019;239:52–60; doi: http://doi.org/10.1016/j.jplph.2019.05.013

45. Phillips HR, Landis JB, Specht CD. Revisiting floral fusion: the evolution and molecular basis of a developmental innovation. J Exp Bot 2020;71(12):3390–404; doi: http://doi.org/10.1093/jxb/eraa125

46. Bianco L, Alagna F, Baldoni L, Finnie C, Svensson B, Perrotta G. Proteome regulation during Olea europaea fruit development. PLoS One 2013;8(1)1–18; doi: http://doi.org/10.1371/journal. pone.0053563

47. Yu JQ, Gu KD, Sun CH, Zhang QY, Wang JH, Ma FF, et al. The apple bHLH transcription factor MdbHLH3 functions in determining the fruit carbohydrates and malate. Plant Biotech J 2020;19(2):285– 99; doi: http://doi.org/10.1111/pbi.13461

http://doi.org/10.1111/pbi.13461

48. Zhang G, Cui X, Niu J, Ma F, Li P. Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signalling pathway in plum (Prunus salicina L.), Physiol Plant 2021;172(3):1739–49; doi: http://doi.org/10.1111/ppl.13383

49. de Magalhaes Andrade J, Toledo TT, Nogueira SB, Cordenunsi BR, Lajolo FM, do Nascimento JRO. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. J Proteom 2012;75(11):3331–41; doi: http://doi.org/10.1016/j.jprot.2012.03.047

http://doi.org/10.1016/j.jprot.2012.03.047

50. Miernyk JA, Thelen JJ. Biochemical approaches for discovering protein-protein interactions. Plant J 2008;53:597–609; doi: http://doi.org/10.1111/j.1365-313X.2007.03316.x

51. Minas IS, Tanou G, Krokida A, Karagiannis E, Belghazi M, Vasilakakis M, et al. Ozone-induced inhibition of kiwifruit ripening is amplified by 1-methylcyclopropene and reversed by exogenous ethylene. BMC Plant Biol 2018;18(1):1–19; doi: http://doi.org/10.1186/s12870-018-1584-y

52. Minas IS, Tanou G, Karagiannis E, Belghazi M, Molassiotis A. Coupling of physiological and proteomic analysis to understand the ethylene-and chilling-induced kiwifruit ripening syndrome. Front Plant Sci 2016;7:120; doi: http://doi.org/10.3389/fpls.2016.00120

53. Chen YY, Zhang ZH, Zhong CY, Song XM, Lin QH, Huang CM, et al. Functional analysis of differentially expressed proteins in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits during ripening. Food Chem 2016;190:763–70; doi: http://doi.org/10.1016/j. foodchem.2015.06.023

54. Wu MC, Hu HT, Yang L, Yang L. Proteomic analysis of up-accumulated proteins associated with fruit quality during autumn olive (Elaeagnus umbellata) fruit ripening. J Agric Food Chem 2011;59(2):577–83; doi: http://doi.org/10.1021/jf103957k

http://doi.org/10.1021/jf103957k

55. Zeng Y, Pan Z, Wang L, Ding Y, Xu Q, Xiao S, et al. Phosphoproteomic analysis of chromoplasts from sweet orange during fruit ripening. Physiol Plant 2014;150(2):252–70; doi: http://doi.org/10.1111/ppl.12080

Article Metrics
199 Views 66 Downloads 265 Total

Year

Month

Related Search

By author names