Selection of new recombinant inbred lines and dual-purpose cowpea genotypes based on total protein and its fractions, amino acids, and nutritional quality
Nutritional quality is a lever for the adoption of new varieties. This study aimed to assess the protein quality of 29 cowpea genotypes for breeding purposes. The collection includes 4 local and donor parental varieties, 10 and 11 progenies of F7-30 and F8-38 families, and 4 dual-purpose varieties. Crude protein and protein-soluble fractions of cowpea grains were determined using the methods of Kjeldahl, Osborne, and Campbell, respectively. Amino acid content was quantified using high-performance liquid chromatography. The descriptive analysis shows high intra and inter-familial trait variability among genotypes. Protein contents varied from 25.5% to 35.86%. The main protein fractions were albumin (24.36–73.34 g/100 g protein) and glutelin, followed by globulin and prolamin. Glutamine/glutamic acid, asparagine/aspartic acid, and phenylalanine + tyrosine were prevalent. Methionine + cysteine was the most limiting amino acid. However, apart from CWS-F7-30-9a, CWS-F7-30-7a, and CWS-F8-38-50, all investigated genotypes meet the requirements of all essential amino acids (EAAs) as recommended by FAO/WHO/UNU adults and 2–5 year olds. The genotypes had a mean predicted protein efficiency ratio of 3.68, making them excellent protein sources. This study identifies genotypes with high protein, good EAA profile, and high protein quality for breeding programs and other specific usages.
Hassane HS, Hama-Ba F, Amadou I, Saïdou A, Balla A, Nestor BI, Charles P. Selection of new recombinant inbred lines and dual-purpose cowpea genotypes based on total protein and its fractions, amino acids, and nutritional quality. J Appl Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2025.189615
1. Omomowo OI, Babalola OO. Constraints and prospects of improving cowpea productivity to ensure food, nutritional security, and environmental sustainability. Front Plant Sci 2021;12:751731. https://doi.org/10.3389/fpls.2021.751731 | |
2. Ha PT, Hiep TT, Thai HN, Liem NT, Thuy DTK, Henry RJ. Assessment of the physical, chemical, yield, and nutritional quality traits of tropical, temperate, and Wild Dry Bean Species in Vietnam. Legume Res 2023;46(11):1413-21. https://doi.org/10.18805/LRF-751 | |
3. Padhi SR, Bartwal A, John R, Tripathi K, Gupta K, Wankhede DP, et al. Evaluation and multivariate analysis of cowpea [Vigna unguiculata (L.) Walp] germplasm for selected nutrients-mining for nutri dense accessions. Front Sustain Food Syst 2022;6:888041. https://doi.org/10.3389/fsufs.2022.888041 | |
4. Iqbal A, Iqtidar AK, Ateeq N, Khan MS. Nutrition quality of important food legumes. Food Chem 2006;97(2):331-5. https://doi.org/10.1016/j.foodchem.2005.05.011 | |
5. Silva JDL, Silva KJD, Rocha MDM, Júnior JAN, Ribeiro VQ. Selection for the development of blackeye cowpea lines. Rev Caatinga 2018;31(1):72-9. https://doi.org/10.1590/1983-21252018v31n109rc | |
6. Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, et al. Cowpea: an overview on its nutritional facts and health benefits. J Sci Food Agric 2018;98(13):4793-806. https://doi.org/10.1002/jsfa.9074 | |
7. Gonçalves A, Goufo P, Rodriguesa M. Cowpea (Vigna unguiculata L. Walp) a renewed multipurpose crop for a more sustainable agri-food system. Nutritional advantages and constraints. J Sci Food Agric 2016;96(9) :2941-51. https://doi.org/10.1002/jsfa.7644 | |
8. Bolarinwa KA, Ogunkanmi LA, Ogundipe OT, Agboola OO, Amusa OD. An investigation of cowpea production constraints and preferences among smallholder farmers in Nigeria. Geo J 2022;87(1):2993-3005. https://doi.org/10.1007/s10708-021-10405-6 | |
9. Affrifah S, Phillips R, Saalia FK. Cowpeas: nutritional profile, processing methods and products-a review. Legume Sci 2021;4(5):131 https://doi.org/10.1002/leg3.131 | |
10. Nikmaram N, Leong SY, Koubaa M, Zhu Z, Barba FJ, Greiner R, et al. Effect of extrusion on the anti-nutritional factors of food products: an overview. Food Control 2017;79:62-73. https://doi.org/10.1016/j.foodcont.2017.03.027 | |
11. Elhardallou SB, Khalid II, Gobouri AA, Abdel-Hafez SH. Amino acid composition of cowpea (Vigna ungiculata L. Walp) flour and its protein isolates. Food Nutr Sci 2015;6(6):790-7. https://doi.org/10.4236/fns.2015.69082 | |
12. Vasconcelos IM, Siebra EA, Maia AAB, Moreira RA, Neto AF, Campelo GJA, et al. Composition, toxic and antinutritional factors of newly developed cultivars of Brazilian soybean (Glycine max). J Sci Food Agric 1997;75:419-26. https://doi.org/10.1002/(SICI)1097-0010(199712)75:4<419::AID-JSFA886>3.0.CO;2-D | |
13. FAO, IFAD, UNICEF, WFP, WHO. The state of food security and nutrition in the world. Safeguarding against economic slowdowns and downtuns. FAO: Licence: CC BY-NC-SA 3.0 IGO, Rome, Italy, 2019. | |
14. Lopes ACA, Freire-Filho FR, Silva RBQ, Campos FL, Rocha MM. Variabilidade e correlac¸o˜es entre caracteres agronoˆmicos em caupi (Vigna unguiculata). Pesqui Agropec Bras 2001;36:515-20. https://doi.org/10.1590/S0100-204X2001000300016 | |
15. Atherton KT. Genetically modified crops: assessing safety. Taylor & Francis. CRC London, London, UK, p P272, 2002. https://doi.org/10.1201/9780203212356 | |
16. AOAC (Association of Official Analytical Chemists) International. Official methods of analysis. 18th edition, AOAC International, Gaithersburg, MD, 2007 | |
17. Osborne TB, Campbell GF. The proteids of MALT.1. J Am Chem Soc 1898;20:419. https://doi.org/10.1021/ja02068a004 | |
18. Bradford MM. A rapid and sensitive method for the quantitation of micrograms quantities for proteins utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3 | |
19. Bidlingmeyer B, Cohen SA, Tarvin TL. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 1984;336:93- 104. https://doi.org/10.1016/S0378-4347(00)85133-6 | |
20. Block RJ, Mitchell HH. The correlation of the amino acid composition of proteins with their nutritive value. Nutr Abstracts Rev 1946;16:249-78. | |
21. Alsmeyer RH, Cunningham AE, Happich ML. Equations predict PER from amino acid analysis. Food Technol 1974;28:34-8. | |
22. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2022. Available via https://www.R-project.org | |
23. Dakora FD, Belane AK. Evaluation of protein and micronutrient levels in edible cowpea (Vigna unguiculata L. Walp.) leaves and seeds. Front Sustain Food Syst 2019;3:70. https://doi.org/10.3389/fsufs.2019.00070 | |
24. Gerrano AS, Willem SR, Sonja LV, Nemera GS, Beyene AA, Hussein AS, et al. Selection of cowpea genotypes based on grain mineral and total protein content. Acta Agric Scand Sec B Soil Plant Sci 2019;69(2):155-66. https://doi.org/10.1080/09064710.2018.1520290 | |
25. Purnamasari I, Syukur SM. Diversity and inheritance in cowpea (Vigna unguiculata) on protein and yield components characters. Biodiversitas 2019;20(5):1294-8. https://doi.org/10.13057/biodiv/d200507 | |
26. Sombié P, Sama H, Barro A, Hilou A, Kiendrébéogo M. The effect of seed size on phytochemical composition in cowpea lines (Vigna unguiculata (L.) Walp.) from Burkina Faso. Agric Sci 2021;12:1462- 72. https://doi.org/10.4236/as.2021.1212093 | |
27. Wibowo KF, Swasti YR, Pranata FS. Low fat and high protein meat analog of cowpea (Vigna unguiculata) with stabilizer cocoa pod husk extract (Theobroma cacao L.). Food Res 2023;7(5):1-11. https://doi.org/10.26656/fr.2017.7(5).789 | |
28. Mbuma NW, Gerrano AS, Lebaka N, Amoo S, Mofokeng A, Labuschagne M. Variability in the concentration of mineral elements and phytochemical contents of cowpea genotypes for crop improvement. Acta Agric Scand Sec B Soil Plant Sci 2021;71:132- 44. https://doi.org/10.1080/09064710.2020.1859609 | |
29. Tchiagam JBN, Bell JM, Nassourou A, Njintang N, Youmbi E. Genetic analysis of seed proteins contents in cowpea (Vigna unguiculata L. Walp.). Afr J Biotechnol 2011;10(16):3077-86. https://doi.org/10.5897/AJB10.2469 | |
30. Santos C, da Costa D, da Silva W, Boiteux L. Genetic analysis of total seed protein content in two cowpea crosses. Crop Sci 2012;52:2501- 6. https://doi.org/10.2135/cropsci2011.12.0632 | |
31. Park SJ, Kim TW, Baik BK. Relationship between proportion and composition of albumins, and in vitro protein digestibility of raw and cooked pea seeds (Pisum sativum L.). J Sci Food Agric 2010;90(10):1719-25. https://doi.org/10.1002/jsfa.4007 | |
32. Gupta P, Singh R, Malhotra S, Boora KS, Singal HR. Characterization of seed storage proteins in high protein genotypes of cowpea [Vigna unguiculata (L.) Walp]. Physiol Mol Biol Plants 2010;16(1):53-8. https://doi.org/10.1007/s12298-010-0007-9 | |
33. Teka TA, Retta N, Bultosa G, Admassu H, Astatkie T. Protein fractions, in vitro protein digestibility and amino acid composition of select cowpea varieties grown in Ethiopia. Food Biosci 2020;36:100634. https://doi.org/10.1016/j.fbio.2020.100634 | |
34. Freitas RL, Ferreira RB, Teixeira AR. Characterization of the proteins from Vigna unguiculata seeds. J Agric Food Chem 2004;52:1682-7. https://doi.org/10.1021/jf0300588 | |
35. Vasconcelos IM, Maia FMM, Farias DF, Campello CC, Carvalho AFU, Moreira RA, et al. Protein fractions, amino acid composition, and antinutritional constituents of high-yielding cowpea cultivars. J Food Compos Anal 2010;23(1):54-60. https://doi.org/10.1016/j.jfca.2009.05.008 | |
36. Silva VM, Nardeli AJ, Mendes NAC, Rocha MM, Wilson L, Young SD, et al. Agronomic biofortification of cowpea with zinc: variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Plant Physiol Biochem 2021;162:378-87. https://doi.org/10.1016/j.plaphy.2021.02.020 | |
37. Mohan VR, Janardhanan KM. Chemical composition and nutritional evaluation of two little-known species of Vigna. Food Chem 1993;48(4):367-71. https://doi.org/10.1016/0308-8146(93)90319-B | |
38. Padi FK. Response to selection for grain yield and correlated response for grain size and earliness in cowpea based on early generation testing. Ann Appl Biol 2008;152:361-8. https://doi.org/10.1111/j.1744-7348.2008.00216.x | |
39. Frota KM, Lopes LA, Silva IC, Arêas JA. Nutritional quality of the protein of Vigna unguiculata L. Walp and its protein isolate. Rev Ciênc Agron 2017;48(5):792-8. https://doi.org/10.5935/1806-6690.20170092 | |
40. Mahan LK, Escott-Stump S. Proteins. In: Krause's food, nutrition, and diet therapy. 9th edition, W.B. Saunders Co, Philadelphia, PA, 1996. | |
41. Food and Agriculture Organization; World Health Organization. Protein quality evaluation. FAO Food and Nutrition Paper, Rome, Italy, vol. 51, pp 66, 1991. | |
42. Rutherfurd SM, Bains K, Moughan PJ. Available lysine and digestible amino acid contents of proteinaceous foods of India. Br J Nutr 2012;108(2):59-68. https://doi.org/10.1017/S0007114512002280 | |
43. FAO/WHO/UNU. Energy and protein requirements. WHO Geneva, Switzerland, 1985. FAO/WHO/UNU Technical Report Series N8 724. | |
44. Kusharto CM, Rosmiati R, Marta EO, Palupi E. Amino acid composition and protein quality of instant liquid food based on Catfish (Clarias gariepinus) and Kelor (Moringa oleifera) flour. IOP Conf Series: Earth Environ Sci 2018;196:012033. https://doi.org/10.1088/1755-1315/196/1/012033 | |
45. Robson AD, Pitman JB. Interactions between nutrients in higher plants. In: Läuchli A, Bieleski RL, (eds.). Inorganic plant nutrition, Springer, New York, NY, pp 147-80, 1983. https://doi.org/10.1007/978-3-642-68885-0_6 | |
46. Jankowski J, Mikulski D, Mikulska M, Ognik K, Ca?yniuk Z, Mróz E, et al. The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poult Sci 2020;99:1028-37. https://doi.org/10.1016/j.psj.2019.10.008 | |
47. Pangrazzi L. Boosting the immune system with antioxidants: where are we now?. Biochemist 2019;41(1):42-4. https://doi.org/10.1042/BIO04101042 | |
48. Vallabha VS, Arun T, Sukhdeo SV, Govindaraju K, Tiku PK. Effect of arginine: lysine ratio in free amino acid and protein form on l-NAME induced hypertension in hypercholesterolemic Wistar rats. RSC Adv 2016;6(77):73388-98. https://doi.org/10.1039/C6RA13632J | |
49. Tan X, Li C, Bai Y, Gilbert RG. The role of storage protein fractions in slowing starch digestion in chickpea seed. Food Hydrocoll 2022;129:107617. https://doi.org/10.1016/j.foodhyd.2022.107617 | |
50. Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, et al. Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 2016;9(6):949-52. https://doi.org/10.1016/j.molp.2016.03.010 | |
51. Shewry PR. Wheat. J Exp Bot 2009;60(6):1537-53. https://doi.org/10.1093/jxb/erp058 | |
52. Mendoza C. Effect of genetically modified low phytic acid plants on mineral absorption. Int J Food Sci Nutr 2002;37:759-67. https://doi.org/10.1046/j.1365-2621.2002.00624.x |
Year
Month
Biochemical and ultrastructural alterations in the brain of mice induced by aqueous leaf extract of a medicinal plant, Lantana camara L. and its amelioration by nimodipine and flunarizine
H. Ashalata Singha, Mahuya Sengupta, Meenakshi BawariIn vitro antioxidant and acetylcholinesterase activities of catechin-loaded green fabricated zinc oxide nanoparticles
Nandhini Baskaran, Anitha SubashEnhancing resistance to blast disease through CRISPR/Cas9 gene editing technology in OsHDT701 gene in RPBio-226 rice cv. (Oryza sativa L.)
Shravya Mathsyaraja, Saida Lavudi, Prathap Reddy VutukuriEffect of organic fertilization on productivity of some newly introduced basil varieties under Siwa Oasis conditions
Wael Ismail Mohamed Toaima, Moustafa Yehia Mohemed Ali Badawy, Emad Saleh HamedCompositional analyses of fragrant white rice and local brown rice varieties of selected Malaysian rice
Mohd Adzim Khalili Rohin, Norhaslinda Ridzwan, Norhayati Abd Hadi, Ruzaina Ishak, Atif Amin BaigAntioxidant effect of Tryptophan on biochemical parameters in the haemolymph and fat body of final instar larvae of silk insect, Bombyx mori
K. P. Priya Bhaskaran, P. U. Bindu, K. Rukhsana, V. P. Akhilesh, E. K. Jisha Krishnan, C. D. SebastianScreening of different Pseudomonas and Bacillus Spp. for production of L-glutamic acid and impact of their cell-free filtrate on growth and yield of brinjal (Solanum melongena)
Valmik M. Patil, Kishor R. Patole, Mohan S. Paprikar, Jaysingh C. Rajput