Phosphate- and potassium-solubilizing Siccibacter colletis promotes wheat growth, yield, and nutrient uptake

Pawan Kumar Sandeep Kumar Parkriti Jhilta Vikram Poria Rajpaul Yadav Surender Singh   

Open Access   

Published:  Aug 20, 2024

DOI: 10.7324/JABB.2024.198931
Abstract

Wheat is one of the staple crops cultivated worldwide and it requires the application of chemical fertilizers for better yield. However, excessive use of these fertilizers can pollute the environment. The aim of this study was to assess the potential of plant growth-promoting rhizobacteria (PGPR) Siccibacter colletis isolated from foothill fields of the Aravalli Hills with different fertilizer levels on wheat growth, yield, and nutrient content. The ability of the isolate to produce IAA, ammonia, ACC deaminase, and HCN and to solubilize potassium and phosphorous makes S. colletis a good candidate for its use as PGPR. S. colletis produced 577.52 ± 0.64 nmol/mg/h and 50.36 ± 3.23 μg/ mL ACC deaminase and IAA, respectively, besides solubilizing P (745.56 ± 39.07 mg/L) and K (14.6 ± 0.08 mg/L). The potential of the culture was assessed in vivo using pot and field experiments. Under both recommended and reduced doses of chemical fertilizers, application of S. colletis significantly improved plant biomass, biometric, and physiological parameters in both pot and field conditions. The findings revealed S. colletis as a suitable candidate for improving wheat yield with a reduced fertilizer dose, which can help to reduce cultivation cost and pollution.


Keyword:     Plant growth-promoting rhizobacte­ria (PGPR) Mineral solubilization Biofertilizer Phosphate NPK Triticum aestivum


Citation:

Kumar P, Kumar S, Jhilta P, Poria V, Yadav R. Phosphate- and potassium-solubilizing Siccibacter colletis promotes wheat growth, yield, and nutrient uptake. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.198931

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Food and Agriculture Organization of the United Nations. Food and Agriculture Organization Corporate Statistical Database, 2024 [cited 2024 March 9]. Rome: Food and Agriculture Organization of the United Nations (FAO). Available from: www.fao.org/faostat/en/#data/QCL

2. Udhayan N, Naik AD, Hiremath GM. An economic analysis of wheat cultivation in north-Karnataka, India. Int J Plant Soil Sci. 2023;35(20):939-45.

https://doi.org/10.9734/ijpss/2023/v35i203887

3. Pérez Vázquez A, Leyva Trinidad DA, Gómez Merino FC. Challenges and proposals to achieve food security by the year 2050. Rev Mex De Cienc Agric. 2018;9(1):175-89. https://doi.org/10.29312/remexca.v9i1.857

4. Kumar P, Singh S, Pranaw K, Kumar S, Singh B, Poria V. Bioinoculants as mitigators of multiple stresses: a ray of hope for agriculture in the darkness of climate change. Heliyon. 2022;8(11):e11269. https://doi.org/10.1016/j.heliyon.2022.e11269

5. Mahadevamurthy M, Channappa TM, Sidappa M, Raghupathi MS, Nagaraj AK. Isolation of phosphate solubilizing fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants. J Appl Biol Biotechnol. 2016;4(6):22-6. https://doi.org/10.7324/JABB.2016.40604

6. Patil S, Nikam M, Anokhina T, Kochetkov V, Chaudhari A. Multi-stress tolerant plant growth promoting Pseudomonas spp. MCC 3145 producing cytostatic and fungicidal pigment. Biocatal Agric Biotechnol. 2017;10:53-63. https://doi.org/10.1016/j.bcab.2017.02.006

7. Orozco-Mosqueda MDC, Glick BR, Santoyo G. Acc deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res. 2020;235:126439. https://doi.org/10.1016/j.micres.2020.126439

8. Yadav AN. Phosphate-solubilizing microorganisms for agricultural sustainability. J Appl Biol Biotechnol. 2022;10(3):1-6. https://doi.org/10.7324/JABB.2022.103ed

9. Pikovskaya R. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiologia. 1948;17:362-70.

10. Aleksandrov V. Organo-mineral fertilizers and silicate bacteria. Dokl Akad Nauk. 1958;7:43-8.

11. Premono ME, Moawad A, Vlek P. Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Agric Sci. 1996;11(1):13-23.

12. Holiday ER, Preedy JR. The precision of a direct-reading flame photometer for the determination of sodium and potassium in biological fluids. Biochem J. 1953;55(2):214-20. https://doi.org/10.1042/bj0550214

13. Mehta S, Nautiyal CS. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol. 2001;43(1):51-6. https://doi.org/10.1007/s002840010259

14. Gordon S, Paleg LG. Quantitative measurement of indole acetic acid. Physiol Plant. 1957;10(1):37-48. https://doi.org/10.1111/j.1399-3054.1957.tb07608.x

15. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47- 56. https://doi.org/10.1016/0003-2697(87)90612-9

16. Jensen H. Notes on the biology of Azotobacter. J Appl Microbiol. 1951;14(1):89-94.

https://doi.org/10.1111/j.1365-2672.1951.tb01997.x

17. Cappuccino JG, Sherman N. Microbiology: a laboratory manual. 10th ed. San Francisco (CA): Pearson; 1999.

18. Saleh SS, Glick BR. Involvement of gacS and rpoS in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol. 2001;47(8):698-705. https://doi.org/10.1139/w01-072

19. Walkley A, Black IA. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37(1):29-38. https://doi.org/10.1097/00010694-193401000-00003

20. Subbiah BV, Asija GL. A rapid procedure for the determination of available nitrogen in soils. J Curr Sci. 1956;25:259-60.

21. Olsen SR, Cole CV, Watanabe FS. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington (DC): US Government Printing Office; 1954.

22. Jackson ML. Soil chemical analysis. New Delhi: Prentice Hall lnc; 1973.

23. Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot. 1992;32(32):85-100. https://doi.org/10.1016/0098-8472(92)90034-Y

24. DuBois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350-6. https://doi.org/10.1021/ac60111a017

25. Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205-7. https://doi.org/10.1007/BF00018060

26. Ibrahim AM, Quick JS. Genetic control of high temperature tolerance in wheat as measured by membrane thermal stability. Crop Sci. 2001;41(5):1405-7. https://doi.org/10.2135/cropsci2001.4151405x

27. Lindner RC. Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol. 1944;19(1):76- 89.

https://doi.org/10.1104/pp.19.1.76

28. Koenig RA, Johnson CR. Colorimetric determination of phosphorus in biological materials. Ind Eng Chem Anal Ed. 1942;14(2):155-6. https://doi.org/10.1021/i560102a026

29. Pickett EE, Koirtyohann SR. Emission flame photometry-a new look at an old method. J Anal Chem. 1969;41(14):28-42. https://doi.org/10.1021/ac50159a003

30. Panigrahi S, Mohanty S, Rath CC. Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with indole acetic acid (iaa) production and plant growth promoting capabilities against selected crops. S Afr J Bot. 2020;134:17-26. https://doi.org/10.1016/j.heliyon.2020.e05106

31. Sharma A, Chakdar H, Vaishnav A, Srivastava AK, Khan N, Bansal YK, et al. Multifarious plant growth-promoting rhizobacterium Enterobacter sp. CM94-mediated systemic tolerance and growth promotion of chickpea (Cicer arietinum L.) under salinity stress. Front Biosci (Landmark Ed). 2023;28(10):241.

https://doi.org/10.31083/j.fbl2810241

32. Chen L, Bai Y, Liu S, Liu H, Chen R, Xiao Y. Effects of plant growth-promoting rhizobacteria Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2 on the growth and cadmium uptake of Arabidopsis thaliana under cadmium stress. Sheng Wu Gong Cheng Xue Bao. 2022;38(5):1915-28. https://doi.org/10.13345/j.cjb.210682

33. Jackson EE, Masood N, Ibrahim K, Urvoy N, Hariri S, Forsythe SJ. Description of Siccibacter colletis sp. nov., a novel species isolated from plant material, and emended description of Siccibacter turicensis. Int J Syst Evol Microbiol. 2015;65(4):1335-41. https://doi.org/10.1099/ijs.0.000108

34. Chamkhi I, Zwanzig J, Ibnyasser A, Cheto S, Geistlinger J, Saidi R, et al. Siccibacter colletis as a member of the plant growth-promoting rhizobacteria consortium to improve faba-bean growth and alleviate phosphorus deficiency stress. Front Sustain Food Syst. 2023;7:1134809.

https://doi.org/10.3389/fsufs.2023.1134809

35. Mamarasulov B, Davranov K, Jahan MS, Jabborova D, Nasif O, Ansari MJ, et al. Characterization, enzymatic and biochemical properties of endophytic bacterial strains of the medicinal plant Ajuga turkestanica (Rgl.) Brig (lamiaceae). J King Saud Univ Sci. 2022;34(6):102183. https://doi.org/10.1016/j.jksus.2022.102183

36. Salazar-RamÍRez M, Sáenz-Mata J, Preciado-Rangel P, Fortis- Hernández M, Rueda-Puente E, Yescas-Coronado P, et al. Plant growth-promoting rhizobacteria associated to candelilla rhizosphere (Euphorbia antisyphilitica) and its effects on Arabidopsis thaliana seedlings. Not Bot Horti Agrobot Cluj Napoca. 2021;49(2):12294.

https://doi.org/10.15835/nbha49212294

37. Belimov AA, Shaposhnikov AI, Syrova DS, Kichko AA, Guro PV, Yuzikhin OS, et al. The role of symbiotic microorganisms, nutrient uptake and rhizosphere bacterial community in response of pea (Pisum sativum L.) genotypes to elevated al concentrations in soil. Plants. 2020;9(12):1801. https://doi.org/10.3390/plants9121801

38. Dobrin A, Zugravu MM, Mo? A, Mu?at M, Burnichi F, Ciceoi R. The influence of microbial inoculants on micro-and macronutrients on calcaric alluvial soil. Rom Agric Res. 2021;38:487-94. https://doi.org/10.59665/rar3851

39. Elhaissoufi W, Ghoulam C, Barakat A, Zeroual Y, Bargaz A. Phosphate bacterial solubilization: a key rhizosphere driving force enabling higher P use efficiency and crop productivity. J Adv Res. 2022;38:13-28. https://doi.org/10.1016/j.jare.2021.08.014

40. Ullah S, Bano A, Ullah A, Shahid MA, Khan NJR. A comparative study of plant growth promoting rhizobacteria (PGPR) and sowing methods on nutrient availability in wheat and rhizosphere soil under salinity stress. Rhizosphere. 2022;23:100571. https://doi.org/10.1016/j.rhisph.2022.100571

41. Sayahi N, Djemal R, Ben Merdes K, Saidii MN, Yengui M, Gdoura R, et al. Characterization of Siccibacter sp. Strain C2 a novel rhizobacterium that enhances tolerance of barley to salt stress. Curr Microbiol. 2022;79(8):239. https://doi.org/10.1007/s00284-022-02930-5

42. Chen Z, Guo Z, Zhou L, Xu H, Liu C, Yan X. Advances in identifying the mechanisms by which microorganisms improve barley salt tolerance. Life. 2024;14(1):6.

https://doi.org/10.3390/life14010006

43. Martynenko E, Arkhipova T, Safronova V, Seldimirova O, Galin I, Akhtyamova Z, et al. Effects of phytohormone-producing rhizobacteria on casparian band formation, ion homeostasis and salt tolerance of durum wheat. Biomolecules. 2022;12(2):230. https://doi.org/10.3390/biom12020230

44. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1473. https://doi.org/10.3389/fpls.2018.01473

45. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq BA. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules. 2016;21(5):573. https://doi.org/10.3390/molecules21050573.

46. Pereira SIA, Abreu D, Moreira H, Vega A, Castro PML. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon. 2020;6(10):e05106. https://doi.org/10.1016/j. heliyon.2020.e05106

47. Urana R, Singh N, Sharma P. Effects of PGPR on growth and photosynthetic pigment of Trigonella foenum-graceum and Brassica juncea in PAH-contaminated soil. SN Appl Sci. 2019;1(7):761.

https://doi.org/10.1007/s42452-019-0780-1

48. Lalay G, Ullah S, Ahmed I. Physiological and biochemical responses of Brassica napus L. to drought?induced stress by the application of biochar and plant growth promoting rhizobacteria. Microsc Res Tech. 2022;85(4):1267-81. https://doi.org/10.1002/jemt.23993

49. Abebe TG, Tamtam MR, Abebe AA, Abtemariam KA, Shigut TG, Dejen YA, et al. Growing use and impacts of chemical fertilizers and assessing alternative organic fertilizer sources in Ethiopia. Appl Env Soil Sci. 2022;2022:4738416.

https://doi.org/10.1155/2022/4738416

50. Fan X, Zhang S, Mo X, Li Y, Fu Y, Liu Z. Effects of plant growth-promoting rhizobacteria and N source on plant growth and N and P uptake by tomato grown on calcareous soils. Pedosphere. 2017;27(6):1027-36. https://doi.org/10.1016/S1002-0160(17)60379-5

51. Dal Cortivo C, Barion G, Visioli G, Mattarozzi M, Mosca G, Vamerali T. Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: assessment of plant-microbe interactions by ESEM. Agric Ecosyst Environ. 2017;247:396-408.

https://doi.org/10.1016/j.agee.2017.07.006

52. Li H, Qiu Y, Yao T, Ma Y, Zhang H, Yang X. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil Tillage Res. 2020;199:104577. https://doi.org/10.1016/j.still.2020.104577

53. Poria V, D?biec-Andrzejewska K, Fiodor A, Lyzohub M, Ajijah N, Singh S, et al. Plant growth-promoting bacteria (PGPB) integrated phytotechnology: a sustainable approach for remediation of marginal lands. Front Plant Sci. 2022;13:999866. https://doi.org/10.3389/fpls.2022.999866

54. Rana A, Joshi M, Prasanna R, Shivay YS, Nain L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol. 2012;50:118-26. https://doi.org/10.1016/j.ejsobi.2012.01.005

55. Yadav RC, Sharma SK, Varma A, Singh UB, Kumar A, Bhupenchandra I, et al. Zinc-solubilizing Bacillus spp. In conjunction with chemical fertilizers enhance growth, yield, nutrient content, and zinc biofortification in wheat crop. Front Microbiol. 2023;14:1210938. https://doi.org/10.3389/fmicb.2023.1210938

56. Kumar A, Maurya BR, Raghuwanshi R. The microbial consortium of indigenous rhizobacteria improving plant health, yield and nutrient content in wheat (T. aestivum). J Plant Nutr. 2021;44(13):1942-56. https://doi.org/10.1080/01904167.2021.1884706

Article Metrics
19 Views 8 Downloads 27 Total

Year

Month

Related Search

By author names

Similar Articles

Biodiversity, mechanisms, and potential biotechnological applications of minerals solubilizing extremophilic microbes: A review

Rubee Devi, Tanvir Kaur, Rajeshwari Negi, Babita Sharma, Sohini Chowdhury, Monit Kapoor, Sangram Singh, Sarvesh Rustagi, Sheikh Shreaz, Pankaj Kumar Rai, Ashutosh Kumar Rai, Ashok Yadav, Divjot Kour, Ajar Nath Yadav

Identification of diazotrophic nostocalean cyanobacteria of north eastern region of India and evaluation for nitrogenase activity and extracellular ammonium excretion

Gunapati Oinam, Wangkhem Indira, O. Avijeet Singh, Th. Indrama, K. Ojit Singh, Laxmipriya Koijam, Chungkham Silvia, A. Subhalaxmi Sharma, Romi Khangembam, Minerva Shamjetshabam, A. Thadoi, K. Sarabati, Th. Bidyababy, O.N. Tiwari

Evaluating the efficacy of six novel indigenous free-living soil bacteria on tea plant of North Bengal tea gardens of West Bengal India and their antagonistic effect on some tea pathogenic fungi

Jayanta Bhaduri, Subhash Kanti Roy

Phosphate-Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Potassium Solubilizing Microorganisms for Agricultural Sustainability

Ajar Nath Yadav

Implications of abiotic stress tolerance in arbuscular mycorrhiza colonized plants: Importance in plant growth and regulation

Madhulika Singh,, Sanskriti Bisht, Shatrupa Singh, Jai Gopal Sharma

Stress Adaptive Phosphorus Solubilizing Microbiomes for Agricultural Sustainability

Divjot Kour, Ajar Nath Yadav

A review on the biological properties of Trichoderma spp. as a prospective biocontrol agent and biofertilizer

Abdul Muizz Al-Azim Abdul-Halim, Pooja Shivanand, Sarayu Krishnamoorthy, Hussein Taha

Nano-biofertilizers for Agricultural Sustainability

Ajar Nath Yadav,, Divjot Kour, Neelam Yadav

Biofertilizer science and practice for agriculture and forestry: A review

Sudipta Saha, Debasish Paul, Tika Ram Poudel, Nafis Mahadi Basunia, Tasnimul Hasan, Mahadi Hasan, Bei Li, Rubel Reza, Ahmed Redwan Haque, Md. Abu Hanif, Manobendro Sarker, Nathan James Roberts, Muneer Ahmad Khoso, Haibo Wu, Hai-long Shen

Beneficial fungal communities for sustainable development: Present scenario and future challenges

Divjot Kour, Sofia Sharief Khan, Seema Ramniwas, Sanjeev Kumar, Ashutosh Kumar Rai, Sarvesh Rustagi, Kundan Kumar Chaubey, Sangram Singh, Ajar Nath Yadav,, Amrik Singh Ahluwalia

Isolation of phosphate solubilizing fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants

Murali Mahadevamurthy, Thriveni M Channappa, Manjula Sidappa, Mythrashree S Raghupathi, Amruthesh K Nagaraj

Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar Co99004

Gurvesh Bhardwaj, Rushabh Shah, Bhrugesh Joshi, Prittesh Patel

Screening and evaluation of PGPR strains having multiple PGP traits from hilly terrain

Teg Bahadur Singh, Vikram Sahai, Akbar Ali, Mrinalini Prasad, Arti Yadav, Preksha Shrivastav, Deepika Goyal, Prem Kumar Dantu

Identification and in-silico characterization of differentially expressed salt-induced proteins in the leaves of mangrove grass Myriostachya wightiana

Mathikani Kiran Kumar, B V Sandeep, Pola Sudhakar

Applications of bacterial endophytes and their advanced identification methodologies

R. Renugadevi, M. P. Ayyappadas, V. Subha Priya, M. Flory Shobana, K. Vivekanandhan

Seasonal effect on the diversity of soil fungi and screening for arsenic tolerance and their remediation

Dheeraj Pandey, Harbans Kaur Kehri, Ifra Zoomi, Shweta Chaturvedi, Kanhaiya Lal Chaudhary

Endophytic bacterial metagenomics and phosphate solubilization activities in an endemic legume Humboldtia brunonis Wall.

Ganesh V. Shendye, N. Thamizhseran

In silico modeling, docking of ThPON1-like protein, and in vitro validation of pesticide tolerance in Trichoderma harzianum

Archana Kumari, Krishna Sundari Sattiraju

Impact of Jeevamrut formulations and biofertilizers on soil microbial and chemical attributes during potato cultivation

Rudra Pratap Singh Gurjar, Dashrath Bhati, Shailesh Kumar Singh

Modulation of photosynthesis, nitrogen fixing ability, and yield attributes of Chickpea (Cicer arietinum L.) to interactive effect NPK fertilizers and municipal wastewater irrigation

Hamid Iqbal Tak

Effect of combined NPK fertilizer on polyphenol contents and antioxidant activity in methanol extract of Curcuma xanthorhiza

Minarni Minarni, Rayandra Asyhar, Amira Amandanisa, Sintya Ainun, Yoshua Shandy Yudha, I Made Artika,, Waras Nurcholis,