Research Article | Volume: 4, Issue: 2, March-April, 2016

Predicted interaction of human Ribosomal Protein S15 with Fragile X Mental Retardation Protein

Edmund Ui-Hang Sim Xiang-Ru Ma Stella Li-Li Chan Choon-Weng Lee Kumaran Narayanan   

Open Access   

Published:  Apr 21, 2016

DOI: 10.7324/JABB.2016.40206

In addition to the central role of ribosome biogenesis, the human ribosomal protein S15 (RPS15) has extra-ribosomal roles that include its association with a congenital disease and a few types of cancer. However, current knowledge of its functions in the context of extra-ribosomal activities remains fragmented. An approach to gain insights into the interaction between RPS15 and possible protein partners is via Bioinformatics strategies. Based on the sequence-to-structure-to-function paradigm, structural data of a protein can be computationally analysed to derive logical interacting partners. This method can include three-dimensional model construction, structural neighbour prediction, and molecular docking analysis. By using this approach, we have constructed RPS15 3D-structural models that have allowed the prediction of 23 structural neighbours. Of these, two that are from human origin were further analysed and only one have logical prospect of binary protein-protein interactions. Further analysis of this structural neighbour revealed 7 candidate docking partners. From these, our molecular docking analysis demonstrated two most logical dock models of interactions between RPS15 with two different domains of the Fragile X Mental Retardation Protein 1 (FMRP1) protein. Hence, we have provided in silico evidence of de novo protein-protein interaction between RPS15 and the Fragile X Mental Retardation Protein 1 (FMRP1).

Keyword:     Ribosomal protein S15 FMRP protein interaction functional prediction molecular docking


Sim EU, Ma XR, Chan SL, Lee CW, Narayanan K. Predicted interaction of human Ribosomal Protein S15 with Fragile X Mental Retardation Protein. J App Biol Biotech. 2016; 4 (02): 038-045. DOI: 10.7324/JABB.2016.40206

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text

1. Shiga K, Yamamoto H, Okamoto H. Isolation and characterization of the human homologue of rig and its pseudogenes: The functional gene has features characteristic of housekeeping genes. Proceedings of the National Academy of Science USA. 1990; 87:3594-3598.

2. Kitagawa M, Takasawa S, Kikuchi N, Itoh T, Teraoka H, Yamamoto H, Okamoto H. rig encodes ribosomal protein S15. The primary structure of mammalian ribosomal protein S15. FEBS Letters. 1991; 283:210-214.

3. Inoue C, Shiga K, Takasawa S, Kitagawa M, Yamamoto H, Okamoto H. Evolutionary conservation of the insulinoma gene rig and its possible function. Proceedings of the National Academy of Science USA. 1987; 84:6659-6662.

4. Takasawa S, Inoue C, Shiga K, Kitagawa M. A novel gene, rig, activated in insulinomas. In: Okamoto H, editor. Molecular Biology of the Islets of Langerhans, Cambridge: Cambridge University Press. 1990, p. 287-299.

5. Hou WR, Luo XY, Du YJ, Tian MJ. cDNA cloning and sequences analysis of RPS15 from the giant panda. Recent Patent of DNA Gene Sequence. 2008; 2:16-19.

6. Campbell MG, Karbstein K. Protein-protein interactions within late pre-40S ribosomes. PLoS One. 2011; 6:e16194.

7. Baumas K, Soudet J, Caizergues-Ferrer M, Faubladier M, Henry Y, Mougin A. Human RioK3 is a novel component of cytoplasmic pre-40S pre-ribosomal particles. RNA Biology. 2012; 9:162-174.

8. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. American Journal of Human Genetics. 2008; 83:769-780.

9. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N. Identification of 315 genes essential for early zebrafish development. Proceedings of the National Academy of Science USA. 2004; 101:12792-12797.

10. Lai K, Amsterdam A, Farrington S, Bronson RT, Hopkins N, Lees JA. Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Developmental Dynamics. 2009; 238:76-85.

11. Yoon SY, Kim JM, Oh JH, Jeon YJ, Lee DS, Kim JH, Choi JY, Ahn BM, Kim S, Yoo HS, Kim YS, Kim NS. Gene expression profiling of human HBV- and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags. International Journal of Oncology. 2006; 29:315-327.

12. Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, Xie S, Liu Q, Liu T, Huang J, Xie W, Li Z, Zhao Y, Wang E, Marincola FM, Yao K. Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. Journal of Translational Medicine. 2008; 6:32.

13. Daftuar L, Zhu Y, Jacq X, Prives C. Ribosomal proteins RPL37, RPS15 and RPS20 regulate the Mdm2-p53-MdmX network. PLoS One. 2013; 8:e68667.

14. Punta M, Ofran Y. The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. PLoS Computational Biology. 2008; 4:e1000160.

15. Szilágyi A, Grimm V, Arakaki AK, Skolnick J. Prediction of physical protein-protein interactions. Physical Biology. 2005; 2:S1-S16.

16. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proceedings of the National Academy of Science USA. 1992; 89:2195-2199.

17. Clamp M, Cuff J, Searle SM, Barton GJ. The Jalview Java alignment editor. Bioinformatics. 2004; 20:426-427.

18. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009; 25:1189-1191.

19. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006; 22:195-201.

20. Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modelling using SWISS-MODEL Workspace. Nature Protocol. 2009; 4:1-13.

21. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research. 2014; 42:W252-258.

22. Benkert P, Biasini M, Schwede T. Towards the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011; 27:343-350.

23. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography. 1993; 26:283-291.

24. Benkert P, Tosatto SCE, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Protein Structural and Functional Bioinformatics. 2008; 71:261-277.

25. Benkert P, Künzli M, Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Research. 2009; 37:W510-W514.

26. Gibrat JF, Madej T, Bryant SH. Surprising similarities in structural comparison. Current Opinions on Structural Biology. 1996; 6:377-385.

27. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R. IntAct: an open source molecular interaction database. Nucleic Acids Research. 2004; 32:D452-455.

28. Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H. The IntAct molecular interaction database in 2012. Nucleic Acids Research. 2012; 40:D841-846.

29. Sigrist CJ, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P. PROSITE: a documented database using patterns and profiles as motif descriptors. Briefing on Bioinformatics. 2002; 3:265-274.

30. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: An automated docking and discrimination method for the prediction of protein complexes. Bioinformatics. 2004; 20:45-50.

31. Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: A fully automated algorithm for protein-protein docking. Nucleic Acids Research. 2004; 32:W96-W99.

32. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis. 1997; 18:2714-2723.

33. Adinolfi S, Ramos A, Martin SR, Dal Piaz F, Pucci P, Bardoni B, Mandel JL, Pastore A. The N-terminus of the fragile X mental retardation protein contains a novel domain involved in dimerization and RNA binding. Biochemistry. 2003; 42:10437-10444.

34. Ramos A, Hollingworth D, Adinolfi S, Castets M, Kelly G, Frenkiel TA, Bardoni B, Pastore A. The structure of the N-terminal domain of the fragile X mental retardation protein: A platform for protein-protein interaction. Structure. 2006; 14:21-31.

35. Siomi H, Matunis MJ, Michael WM, Dreyfuss G. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Research. 1993; 21:119-1198.

36. Adinolfi S, Bagni C, Castiglione Morelli MA, Fraternali F, Musco G, Pastore A. Novel RNA-binding motif: the KH module. Biopolymers. 1999; 51:15-164.

37. Selenko P, Sprangers R, Stier G, Buhler D, Fischer U, Sattler M. SMN Tudor domain structure and its interaction with the Sm proteins. Nature Structural & Molecular Biology. 2001; 8:27-31.

38. Bardoni B, Mandel JL. Advances in understanding of fragile X pathogenesis and FMRP function, and in identification of X linked mental retardation genes. Current Opinions on Genetics and Development. 2002; 12:284-293.

39. Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annual Review of Pathology. 2012; 7:219-245.

40. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Human Molecular Genetics. 2001; 10:329-338.

41. Lacoux C, Di Marino D, Boyl PP, Zalfa F, Yan B, Ciotti MT, Falconi M, Urlaub H, Achsel T, Mougin A, Caizergues-Ferrer M, Bagni C. BC1-FMRP interaction is modulated by 2'-O-methylation: RNA-binding activity of the tudor domain and translational regulation at synapses. Nucleic Acids Research. 2012; 40:4086-4096.

42. Khandjian EW, Corbin F, Woerly S, Rousseau F. The fragile X mental retardation protein is associated with ribosomes. Nature Genetics. 1996; 12:91-93.

43. Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y, Khandjian EW. Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression. Human Molecular Genetics. 2002; 11:3007-3017.

Article Metrics

163 Absract views 156 PDF Downloads 319 Total views

Related Search

By author names

Citiaion Alert By Google Scholar

Similar Articles