REFERENCES
1. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R, editors. Plant-microbe interactions in agro-ecological perspectives: Volume 2: microbial interactions and agro-ecological impacts. Singapore: Springer Singapore; 2017, p. 543–80.
2. Yadav AN. Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol. 2021;9:1–4.
3. Suman A, Yadav AN, Verma P. Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R, editors. Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 1: Research Perspectives. New Delhi: Springer; 2016, p. 117–43.
4. Yadav AN. Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol. 2018;1:1–5.
5. Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, et al. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek. 2020;113:1075–7.
6. Yadav AN. Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric. 2019;3:91–3.
7. Yadav AN, Mishra S, Kour D, Yadav N, Kumar A. Agriculturally Important Fungi for Sustainable Agriculture, Volume 1: Perspective for Diversity and Crop Productivity. Cham: Springer International Publishing; 2020.
8. Verma V, Srivastava A, Garg SK, Singh VP, Arora PK. Incorporating omics-based tools into endophytic fungal research. Biotechnol Notes. 2024;5:1–7.
9. Yadav AN, Mishra S, Kour D, Yadav N, Kumar A. Agriculturally important fungi for sustainable agriculture, Volume 2: functional annotation for crop protection. Cham: Springer International Publishing; 2020.
10. Adeleke BS, Babalola OO. Meta-omics of endophytic microbes in agricultural biotechnology. Biocatal Agric Biotechnol. 2022;42:102332.
11. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, et al. Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP, editor. Advances in Endophytic Fungal Research: Present Status and Future Challenges. Cham: Springer International Publishing; 2019. p. 105–44.
12. Yadav AN. Recent trends in mycological research, Volume 1: agricultural and medical perspective. Cham: Springer; 2020.
13. Abdel-Azeem AM, Yadav AN, Yadav N, Usmani Z. Industrially important fungi for sustainable development, Vol-1: biodiversity and ecological perspective. Cham: Springer; 2021.
14. Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN, et al. Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Kumar A, Radhakrishnan EK, editors. Microbial Endophytes, Woodhead Publishing; 2020. p. 273–305.
15. Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, et al. Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol. 2016;66:529–42.
16. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, et al. Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A, editors. Recent Advancement in White Biotechnology through Fungi, Volume 2: Perspective for Value-Added Products and Environments. Cham: Springer International Publishing; 2019. p. 1–64.
17. Chetia H, Kabiraj D, Bharali B, Ojha S, Barkataki MP, Saikia D, et al. Exploring the benefits of endophytic fungi via omics. In: Singh BP, editor. Advances in Endophytic Fungal Research: Present Status and Future Challenges. Cham: Springer International Publishing; 2019. p. 51–81.
18. Diwan D, Rashid MM, Vaishnav A. Current understanding of plant-microbe interaction through the lenses of multi-omics approaches and their benefits in sustainable agriculture. Microbiol Res. 2022;265:127180.
19. Misra BB, Langefeld C, Olivier M, Cox LA. Integrated omics: tools, advances and future approaches. J Mol Endocrinol. 2019;62:R21–45.
20. Cao L, Zhang Q, Miao R, Lin J, Feng R, Ni Y, et al. Application of omics technology in the research on edible fungi. Curr Res Food Sci. 2023;6:100430.
21. Kato H, Takahashi S, Saito K. Omics and integrated omics for the promotion of food and nutrition science. J Tradit Complement Med. 2011;1:25–30.
22. Fondi M, Liò P. Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res. 2015;171:52–64.
23. Muller EE, Pinel N, Laczny CC, Hoopmann MR, Narayanasamy S, Lebrun LA, et al. Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nat Commun. 2014;5:5603.
24. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet. 2015;16:85–97.
25. Yang JY, Karr JR, Watrous JD, Dorrestein PC. Integrating ‘-omics’ and natural product discovery platforms to investigate metabolic exchange in microbiomes. Curr Opin Cheml Biol. 2011;15:79–87.
26. Graw S, Chappell K, Washam CL, Gies A, Bird J, Robeson MS, et al. Multi-omics data integration considerations and study design for biological systems and disease. Mol Omics. 2021;17:170–85.
27. Suryanarayanan TS. Endophyte research: going beyond isolation and metabolite documentation. Fungal Ecol. 2013;6:561–8.
28. Chen XL, Sun MC, Chong SL, Si JP, Wu LS. Transcriptomic and metabolomic approaches deepen our knowledge of plant–endophyte interactions. Front Plant Sci. 2022;12:700200.
29. Subudhi E, Sahoo RK, Dey S, Das A, Sahoo K. Unraveling plant-endophyte interactions: an omics insight. In: Jha S, editor. Endophytes and Secondary Metabolites. Cham: Springer; 2018. p. 1–19.
30. Kaul S, Sharma T, Dhar MK. “Omics” tools for better understanding the plant–endophyte interactions. Front Plant Sci. 2016;7:955.
31. Sagita R, Quax WJ, Haslinger K. Current state and future directions of genetics and genomics of endophytic fungi for bioprospecting efforts. Front Bioeng Biotechnol. 2021;9:649906.
32. Dudeja SS, Suneja-Madan P, Paul M, Maheswari R, Kothe E. Bacterial endophytes: molecular interactions with their hosts. J Basic Microbiol. 2021;61:475–505.
33. Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Crit Rev Biotechnol. 2020;40:1210–31.
34. Kumar M, Sharma R, Dua M, Tuteja N, Johri AK. “Electrotransformation” transformation system for root endophytic fungus Piriformospora indica. In: Varma A, Kost G, Oelmüller R, editors. Piriformospora indica: Sebacinales and Their Biotechnological Applications. Berlin: Springer Berlin Heidelberg; 2013. p. 309–21.
35. Qiang-long Z, Shi L, Peng G, Fei-shi L. High-throughput sequencing technology and its application. J Northeast Agric Univ. 2014;21:84–96.
36. Aragona M, Haegi A, Valente MT, Riccioni L, Orzali L, Vitale S, et al. New-generation sequencing technology in diagnosis of fungal plant pathogens: a dream comes true? J Fungi. 2022;8:737.
37. van der Does HC, Rep M. Adaptation to the host environment by plant-pathogenic fungi. Ann Rev Phytopathol. 2017;55:427–50.
38. Lu Y, Ye C, Che J, Xu X, Shao D, Jiang C, et al. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1. Microb Cell Fact. 2019;18:1–16.
39. Nicholson MJ, Van de Bittner KC, Ram A, Bustamante LY, Scott B, Parker EJ. Draft genome sequence of the filamentous fungus Hypoxylon pulicicidum ATCC 74245. Genome Announc. 2018;6:e01380–17.
40. Shaw JJ, Berbasova T, Sasaki T, Jefferson-George K, Spakowicz DJ, Dunican BF, et al. Identification of a fungal 1, 8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases. J Biol Chem. 2015;290:8511–26.
41. Silva DPD, Cardoso MS, Macedo AJ. Endophytic fungi as a source of antibacterial compounds—a focus on gram-negative bacteria. Antibiotics. 2022;11:1509.
42. Herndon N, Shelton J, Gerischer L, Ioannidis P, Ninova M, Dönitz J, et al. Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genom. 2020;21:1–13.
43. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;68:669–85.
44. Sahoo RK, Gaur M, Subudhi E. Chapter 4 - function profiling of microbial community. In: Singh HB, Gupta VK, Jogaiah S, editors. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam: Elsevier; 2019. p. 77–85.
45. Maropola MKA, Ramond JB, Trindade M. Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods. 2015;112:104–17.
46. Nguyen MH, Shin KC, Lee JK. Fungal community analyses of endophytic fungi from two oak species, Quercus mongolica and Quercus serrata, in Korea. Mycobiology. 2021;49:385–95.
47. Hong CE, Kim JU, Lee JW, Bang KH, Jo IH. Metagenomic analysis of bacterial endophyte community structure and functions in Panax ginseng at different ages. 3 Biotech. 2019;9:1–8.
48. Toole DR, Zhao J, Martens-Habbena W, Strauss SL. Bacterial functional prediction tools detect but underestimate metabolic diversity compared to shotgun metagenomics in southwest Florida soils. Appl Soil Ecol. 2021;168:104129.
49. Premalatha K, Kalra A. Molecular phylogenetic identification of endophytic fungi isolated from resinous and healthy wood of Aquilaria malaccensis, a red listed and highly exploited medicinal tree. Fungal Ecol. 2013;6:205–11.
50. Weig AR, Peršoh D, Werner S, Betzlbacher A, Rambold G. Diagnostic assessment of mycodiversity in environmental samples by fungal ITS1 rDNA length polymorphism. Mycol Prog. 2013;12:719–25.
51. Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay KA, Slippers B. Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS One. 2013;8:e81718.
52. Toju H, Tanabe AS, Ishii H. Ericaceous plant–fungus network in a harsh alpine–subalpine environment. Mol Ecol. 2016;25:3242–57.
53. Yan K, Zhang J, Cai Y, Cao G, Meng L, Soaud SA, et al. Comparative analysis of endophytic fungal communities in bamboo species Phyllostachys edulis, Bambusa rigida, and Pleioblastus amarus. Sci Rep. 2023;13:20910.
54. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, et al. Functional metagenomic profiling of nine biomes. Nature. 2008;452:629–32.
55. Langa-Lomba N, Grimplet J, Sánchez-Hernández E, Martín-Ramos P, Casanova-Gascón J, Julián-Lagunas C, et al. Metagenomic study of fungal microbial communities in two PDO Somontano Vineyards (Huesca, Spain): effects of age, plant genotype, and initial phytosanitary status on the priming and selection of their associated microorganisms. Plants. 2023;12:2251.
56. Pais A, Ristaino J, Whetten R, Xiang QYJ. Metagenomic study reveals hidden relationships among fungal diversity, variation of plant disease, and genetic distance in Cornus florida (Cornaceae). Front Plant Sci. 2023;14:1282188.
57. Zhang Q, Xue XZ, Miao SM, Cui JL, Qin XM. Differential relationship of fungal endophytic communities and metabolic profiling in the stems and roots of Ephedra sinica based on metagenomics and metabolomics. Symbiosis. 2020;81:115–25.
58. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13:e1005457.
59. Govindarajan R, Duraiyan J, Kaliyappan K, Palanisamy M. Microarray and its applications. J Pharm Bioallied Sci. 2012;4:S310–2.
60. Molina LG, Cordenonsi da Fonseca G, Morais GLd, de Oliveira LFV, Carvalho JBd, Kulcheski FR, et al. Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genet Mol Biol. 2012;35:292–303.
61. Sheibani-Tezerji R, Rattei T, Sessitsch A, Trognitz F, Mitter B. Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. mBio. 2015;6:e00621–15.
62. Ambrose KV, Belanger FC. SOLiD-SAGE of endophyte-infected red fescue reveals numerous effects on host transcriptome and an abundance of highly expressed fungal secreted proteins. PLoS One. 2012;7:e53214.
63. Molitor A, Zajic D, Voll LM, Pons-Kühnemann J, Samans B, Kogel KH, et al. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica–mediated systemic induced resistance to powdery mildew. Mol Plant Microb Interact. 2011;24:1427–39.
64. Jonkers W, Rodriguez Estrada AE, Lee K, Breakspear A, May G, Kistler HC. Metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro. Appl Environ Microbiol. 2012;78:3656–67.
65. Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, et al. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol. 2014;5:479.
66. Dupont PY, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, et al. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol. 2015;208:1227–40.
67. Ghaffari MR, Ghabooli M, Khatabi B, Hajirezaei MR, Schweizer P, Salekdeh GH. Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol Biol. 2016;90:699–717.
68. Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol. 2017;213:324–37.
69. Ortiz J, Soto J, Fuentes A, Herrera H, Meneses C, Arriagada C. The endophytic fungus Chaetomium cupreum regulates expression of genes involved in the tolerance to metals and plant growth promotion in Eucalyptus globulus roots. Microorganisms. 2019;7:490.
70. Shen M, Schneider H, Xu R, Cao G, Zhang H, Li T, et al. Dark septate endophyte enhances maize cadmium (Cd) tolerance by the remodeled host cell walls and the altered Cd subcellular distribution. Environ Exp Bot. 2020;172:104000.
71. Shaffer JP, Carter ME, Spraker JE, Clark M, Smith BA, Hockett KL, Baltrus DA, Arnold AE, et al. Transcriptional profiles of a foliar fungal endophyte (Pestalotiopsis, Ascomycota) and its bacterial symbiont (Luteibacter, Gammaproteobacteria) reveal sulfur exchange and growth regulation during early phases of symbiotic interaction. Msystems. 2022;7:e00091–22.
72. Malinich EA, Wang K, Mukherjee PK, Kolomiets M, Kenerley CM. Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genom. 2019;20:1–19.
73. Natarajan S, Pucker B, Srivastava S. Genomic and transcriptomic analysis of camptothecin producing novel fungal endophyte-Alternaria burnsii NCIM 1409. Sci Rep. 2023;13:14614.
74. Rashad YM, Al Tami MS, Abdalla SA. Eliciting transcriptomic and antioxidant defensive responses against Rhizoctonia root rot of sorghum using the endophyte Aspergillus oryzae YRA3. Sci Rep. 2023;13:19823.
75. Swarupa V, Pavitra K, Shivashankara K, Ravishankar K. Omics-driven approaches in plant–microbe interaction. In: Singh D, Singh H, Prabha R, editors. Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 1: Research Perspectives. New Delhi: Springer; 2016. p. 61–84.
76. Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 2011;5:1881–95.
77. Shi Y, Tyson GW, Eppley JM, DeLong EF. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J. 2011;5:999–1013.
78. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527.
79. Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 2013;7:2248–58.
80. Sharaff MM, Subrahmanyam G, Kumar A, Yadav AN. Mechanistic understanding of the root microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav AN, Yadav N (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, 2020. pp 61-84.
81. Peršoh D. Plant-associated fungal communities in the light of meta’omics. Fungal Divers. 2015;75:1–25.
82. Jo Y, Back C-G, Choi H, Cho WK. Comparative microbiome study of mummified peach fruits by metagenomics and metatranscriptomics. Plants. 2020;9:1052.
83. Guo L, Yu H, Wang B, Vescio K, DeIulio GA, Yang H, et al. Metatranscriptomic comparison of endophytic and pathogenic Fusarium–Arabidopsis interactions reveals plant transcriptional plasticity. Mol Plant Microb Interact. 2021;34:1071–83.
84. Otto M, Geml J, Hegyi ÁI, Hegyi-Kaló J, Kun J, Gyenesei A, et al. Metatranscriptomic analyses of grapes reveal differences in expressed functional genes of filamentous and yeast fungi during noble rot and grey rot. Fungal Ecol. 2023;65:101277.
85. Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genom. 2014;15:1–19.
86. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996;13:19–50.
87. Kav NN, Srivastava S, Yajima W, Sharma N. Application of proteomics to investigate plant-microbe interactions. Curr Proteom. 2007;4:28–43.
88. Jayaraman D, Forshey KL, Grimsrud PA, Ané J-M. Leveraging proteomics to understand plant–microbe interactions. Front Plant Sci. 2012;3:44.
89. Keller M, Hettich R. Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol Mol Biol Rev. 2009;73:62–70.
90. Calderón-González KG, Hernández-Monge J, Herrera-Aguirre ME, Luna-Arias JP. Bioinformatics tools for proteomics data interpretation. In: Mirzaei H, Carrasco M, editors. Modern Proteomics – Sample Preparation, Analysis and Practical Applications. Cham: Springer International Publishing; 2016. p. 281–341.
91. Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res. 2021;242:126590.
92. Pillai TG. Pathogen to endophytic transmission in fungi-a proteomics approach. SOJ Microbiol Infect Dis. 2017;5:1–5.
93. Domingo G, Vannini C, Bracale M, Bonfante P. Proteomics as a tool to decipher plant responses in arbuscular mycorrhizal interactions: a meta-analysis. Proteomics. 2023;23:2200108.
94. Yuan J, Zhang W, Sun K, Tang MJ, Chen PX, Li X, et al. Comparative transcriptomics and proteomics of Atractylodes lancea in response to endophytic fungus Gilmaniella sp. AL12 reveals regulation in plant metabolism. Front Microbiol. 2019;10:1208.
95. Gómez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV. Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis. 2009;30:2996–3005.
96. Ghaffari MR, Mirzaei M, Ghabooli M, Khatabi B, Wu Y, Zabet-Moghaddam M, et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming. Environ Exp Bot. 2019;157:197–210.
97. Sepehri M, Ghaffari M, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, et al. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol. 2021;131:1870–89.
98. Maron PA, Ranjard L, Mougel C, Lemanceau P. Metaproteomics: a new approach for studying functional microbial ecology. Microbial Ecol. 2007;53:486–93.
99. Dubey RK, Tripathi V, Prabha R, Chaurasia R, Singh DP, Rao CS, et al. Metatranscriptomics and metaproteomics for microbial communities profiling. In: Dubey RK, Tripathi V, Prabha R, et al. editors. Unravelling the Soil Microbiome: Perspectives for Environmental Sustainability. Cham: Springer International Publishing; 2020. p. 51–60.
100. Seifert J, Herbst FA, Halkjær Nielsen P, Planes FJ, Jehmlich N, Ferrer M, et al. Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities. Proteomics. 2013;13:2786–804.
101. Mueller RS, Pan C. Sample handling and mass spectrometry for microbial metaproteomic analyses. In: DeLong EF, editors. Methods in Enzymology. Academic Press; 2013. p. 289–303.
102. Pan C, Banfield JF. Quantitative metaproteomics: functional insights into microbial communities. In: Paulsen IT, Holmes AJ, editors. Environmental Microbiology: Methods and Protocols. Totowa (NJ): Humana Press; 2014. p. 231–40.
103. Ullah J, Khanum Z, Khan IA, Khalid AN, Musharraf SG, Ali A. Metaproteomics reveals the structural and functional diversity of Dermatocarpon miniatum (L.) W. Mann. Microbiota. Fungal Biol. 2021;125:32–8.
104. Zhang HW, Lv C, Zhang LJ, Guo X, Shen YW, Nagle DG, et al. Application of omics-and multi-omics-based techniques for natural product target discovery. Biomed Pharmacother. 2021;141:111833.
105. Monteiro M, Carvalho M, Bastos M, Guedes de Pinho P. Metabolomics analysis for biomarker discovery: advances and challenges. Curr Med Chem. 2013;20:257–71.
106. Klassen A, Faccio AT, Canuto GAB, da Cruz PLR, Ribeiro HC, Tavares MFM, et al. Metabolomics: definitions and significance in systems biology. In: Sussulini A, editor. Metabolomics: From Fundamentals to Clinical Applications. Cham: Springer International Publishing; 2017. p. 3–17.
107. Tugizimana F, Mhlongo MI, Piater LA, Dubery IA. Metabolomics in plant priming research: the way forward? Int J Mol Sci. 2018;19:1759.
108. Jendoubi T. Approaches to integrating metabolomics and multi-omics data: a primer. Metabolites. 2021;11:184.
109. Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites. 2020;10:52.
110. Salem MA, Perez de Souza L, Serag A, Fernie AR, Farag MA, Ezzat SM, et al. Metabolomics in the context of plant natural products research: from sample preparation to metabolite analysis. Metabolites. 2020;10:37.
111. Patil AS. Plant secondary metabolites: isolation, characterization & biological properties. Delhi: Studera Press; 2020.
112. Pinu FR, Villas-Boas SG, Aggio R. Analysis of intracellular metabolites from microorganisms: quenching and extraction protocols. Metabolites. 2017;7:53.
113. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88:524–45.
114. Frisvad JC, Andersen B, Thrane U. The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res. 2008;112:231–40.
115. Li C, Gao Z, Su B, Xu G, Lin X. Data analysis methods for defining biomarkers from omics data. Anal Bioanall Chem. 2022;414:235–50.
116. Wolfender J-L, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatog A. 2015;1382:136–64.
117. Khoomrung S, Wanichthanarak K, Nookaew I, Thamsermsang O, Seubnooch P, Laohapand T, et al. Metabolomics and integrative omics for the development of Thai traditional medicine. Front Pharmacol. 2017;8:474.
118. Xie J, Zhang A, Wang X. Metabolomic applications in hepatocellular carcinoma: toward the exploration of therapeutics and diagnosis through small molecules. RSC Adv. 2017;7:17217–226.
119. Maheshwari DK. Endophytes: biology and biotechnology. Cham: Springer; 2017.
120. Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for plant improvement: status and prospects. Front Plant Sci. 2017;8:271676.