Expression and characterization of global consensus nonstructural protein 1 (NS1) of four dengue virus serotypes in Escherichia coli

Nguyen Le Cu Luong Ngoc Nguyen Chung Van Huynh Tuan Van Le Anh Nguyen Tuan Tran Dat Tuan Dang   

Open Access   

Published:  Jun 11, 2024

DOI: 10.7324/JABB.2024.188233
Abstract

In the aftermath of the COVID-19 pandemic, a sudden surge in dengue cases was observed globally, compounding public health challenges. Dengue viruses, already a major public health concern, have seen intensified transmission, necessitating improved epidemiological surveillance and targeted interventions. Epidemiological surveys, particularly seroepidemiological surveys, are instrumental in elucidating serotype prevalence and informing vaccination programs. However, the highly variable dengue viruses often hamper the development of universally effective diagnostic tools. To overcome this obstacle in Vietnam, we have designed and developed an effective production system for the global consensus nonstructural protein 1 (NS1) antigens for all four serotypes through an Escherichia coli expression system. These global consensuses NS1 antigens were purified to near homogeneity and their identities were confirmed by mass spectrometry. Exhibiting robust reactivity with dengue-infected patient sera in the Western blot assay, the antigens revealed serotype-specific reactivity profiles, proving their diagnostic potential. Our production method, characterized by a relatively high yield and a straightforward purification protocol, offers a scalable solution for the creation of dengue serotype diagnostic assays in the backdrop of evolving dengue global epidemics.


Keyword:     Dengue viruses Global consensus Nonstructural protein 1 Escherichia coli Western blot Diagnosis


Citation:

Cu NL, Nguyen LN, Huynh CV, Le TV, Tran ANT, Dang DT. Expression and characterization of global consensus nonstructural protein 1 (NS1) of four dengue virus serotypes in Escherichia coli. J App Biol Biotech. 2024. Online First. http://doi.org/10.7324/JABB.2024.188233

Copyright: Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license.

HTML Full Text
Reference

1. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8(12 Suppl):S7-16. https://doi.org/10.1038/nrmicro2460

2. Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4(9):1508-15. https://doi.org/10.1038/s41564-019-0476-8

3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7. https://doi.org/10.1038/nature12060

4. Taylor L. Dengue and chikungunya cases surge as climate change spreads arboviral diseases to new regions. BMJ. 2023;380:717. https://doi.org/10.1136/bmj.p717

5. Lenharo M. Dengue is breaking records in the Americas - what's behind the surge? Nature. 2023. https://doi.org/10.1038/d41586-023-02423-w

6. Katzelnick LC, Fonville JM, Gromowski GD, Bustos Arriaga J, Green A, James SL, et al. Dengue viruses cluster antigenically but not as discrete serotypes. Science. 2015;349(6254):1338-43. https://doi.org/10.1126/science.aac5017

7. Katzelnick LC, Gresh L, Halloran ME, Mercado JC, Kuan G, Gordon A, et al. Antibody-dependent enhancement of severe dengue disease in humans. Science. 2017;358(6365):929-32. https://doi.org/10.1126/science.aan6836

8. Foucambert P, Esbrand FD, Zafar S, Panthangi V, Cyril Kurupp AR, Raju A, et al. Efficacy of dengue vaccines in the prevention of severe dengue in children: a systematic review. Cureus. 2022;14(9):e28916. https://doi.org/10.7759/cureus.28916

9. Zainul R, Ansori ANM, Murtadlo AAA, Sucipto TH, Kharisma VD, Widyananda MH, et al. The recent development of dengue vaccine: a review. J Med Pharm Chem Res. 2024;6(4);362-82.

10. Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell. 2002;108(5):717-25. https://doi.org/10.1016/S0092-8674(02)00660-8

11. Modis Y, Ogata S, Clements D, Harrison SC. Structure of the dengue virus envelope protein after membrane fusion. Nature. 2004;427(6972):313-9. https://doi.org/10.1038/nature02165

12. Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The good, the bad, and the shocking: the multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis. Annu Rev Virol. 2018;5(1):227-53. https://doi.org/10.1146/annurev-virology-101416-041848

13. Puerta-Guardo H, Glasner DR, Harris E. Dengue virus NS1 disrupts the endothelial glycocalyx, leading to hyperpermeability. PLoS Pathog. 2016;12(7):e1005738. https://doi.org/10.1371/journal.ppat.1005738

14. Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH. Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res. 2023;324:199018. https://doi.org/10.1016/j.virusres.2022.199018

15. Pierson TC and Diamond MS. Flaviviruses. In: Knipe DM, Howley PM editors. Fields virology. 6th ed. Philadelphia (PA): Lippincott Williams & Wilkins; 2013. vol 1. p. 757-8.

16. Huang HJ, Yang M, Chen HW, Wang S, Chang CP, Ho TS, et al. A novel chimeric dengue vaccine candidate composed of consensus envelope protein domain III fused to C-terminal-modified NS1 protein. Vaccine. 2022;40(15):2299-310. https://doi.org/10.1016/j.vaccine.2022.02.070

17. Sankaradoss A, Jagtap S, Nazir J, Moula SE, Modak A, Fialho J, et al. Immune profile and responses of a novel dengue DNA vaccine encoding an EDIII-NS1 consensus design based on Indo-African sequences. Mol Ther. 2022;30(5):2058-77. https://doi.org/10.1016/j.ymthe.2022.01.013

18. Park C, Kim WB, Cho SY, Oh EJ, Lee H, Kang K, et al. A simple method for the design and development of flavivirus NS1 recombinant proteins using an in silico approach. Biomed Res Int. 2020;2020:3865707. https://doi.org/10.1155/2020/3865707

19. Hussain M, Idrees M, Afzal S. Development of global consensus of dengue virus envelope glycoprotein for epitopes based vaccine design. Curr Comput Aided Drug Des. 2015;11(1):84-97. https://doi.org/10.2174/1573409911666150529130134

20. Ayub A, Ashfaq UA, Idrees S, Haque A. Global consensus sequence development and analysis of dengue NS3 conserved domains. Biores Open Access. 2013;2(5):392-6. https://doi.org/10.1089/biores.2013.0022

21. Danecek P, Lu W, Schein CH. PCP consensus sequences of flaviviruses: correlating variance with vector competence and disease phenotype. J Mol Biol. 2010;396(3):550-63. https://doi.org/10.1016/j.jmb.2009.11.070

22. Leng CH, Liu SJ, Tsai JP, Li YS, Chen MY, Liu HH, et al. A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. Microbes Infect. 2009;11(2):288-95. https://doi.org/10.1016/j.micinf.2008.12.004

23. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792- 7. https://doi.org/10.1093/nar/gkh340

24. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7. https://doi.org/10.1093/molbev/msab120

25. Jung SK, McDonald K. Visual gene developer: a fully programmable bioinformatics software for synthetic gene optimization. BMC Bioinform. 2011;12:340. https://doi.org/10.1186/1471-2105-12-340

26. Webster GR, Teh AY, Ma JK. Synthetic gene design-The rationale for codon optimization and implications for molecular pharming in plants. Biotechnol Bioeng. 2017;114(3):492-502. https://doi.org/10.1002/bit.26183

27. Lezin G, Kosaka Y, Yost HJ, Kuehn MR, Brunelli L. A one-step miniprep for the isolation of plasmid DNA and lambda phage particles. PLoS One. 2011;6(8):e23457. https://doi.org/10.1371/journal.pone.0023457

28. Johnson BH, Hecht MH. Recombinant proteins can be isolated from E. coli cells by repeated cycles of freezing and thawing. Biotechnology (NY). 1994;12(13):1357-60. https://doi.org/10.1038/nbt1294-1357

29. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676-82. https://doi.org/10.1038/nmeth.2019

30. Nguyen TTM, Le VP, Le VT. Epidemiological characteristics and circulation of dengue virus serotypes causing dengue fever in Dak Lak province in 2020. Can Tho J Med Pharm. 2023;63:63-9.

31. Nguyen TNT, Huynh TTH, Nguyen PT, Duong TAT, Cao TR, Le THT, et al. Expression of a synthetic gene encoding the enhanced green fluorescent protein in various Escherichia coli strains. Vietnam J Biotechnol. 2022;20(2):359-68. https://doi.org/10.15625/1811-4989/16344

32. Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol. 2004;22(7):877-82. https://doi.org/10.1038/nbt984

33. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172. https://doi.org/10.3389/fmicb.2014.00172

34. Das D, Mongkolaungkoon S, Suresh MR. Super induction of dengue virus NS1 protein in E. coli. Protein Expr Purif. 2009;66(1):66-72. https://doi.org/10.1016/j.pep.2009.02.003

35. Allonso D, da Silva Rosa M, Coelho DR, da Costa SM, Nogueira RM, Bozza FA, et al. Polyclonal antibodies against properly folded Dengue virus NS1 protein expressed in E. coli enable sensitive and early dengue diagnosis. J Virol Methods. 2011;175(1):109-16. https://doi.org/10.1016/j.jviromet.2011.04.029

36. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact. 2015;14:41. https://doi.org/10.1186/s12934-015-0222-8

37. Vien CC, Pham NT, Nguyen LMH, Ly TTT, Vu SN. Dengue fever in central highlands region, 2000-2020. Vietnam J Prevent Med. 2023;32(Suppl. 2):46-52.

38. Nguyen TTV, Phan TTN, Le VT, Nguyen VT, Le DMQ, Vien CC. Circulation of Dengue virus serotypes causing dengue fever in the Central Highlands Region, 2003-2020. Vietnam J Prevent Med. 2022;32(Suppl. 2):64-9.

39. Nabeshima T, Ngwe Tun MM, Thuy NTT, Hang NLK, Mai LTQ, Hasebe F, et al. An outbreak of a novel lineage of dengue virus 2 in Vietnam in 2022. J Med Virol. 2023;95(11):e29255. https://doi.org/10.1002/jmv.29255

40. Baihaki I, Dewi BI, Kharisma VD, Murtadlo AA, Taman MB, Purnamasari D, et al. Correlation of the presence of non-structural-1 (NS1) antigen dengue virus with severity of dengue infection. Pharmacognosy J. 2022;14(6);813-6. https://doi.org/10.5530/pj.2022.14.172

41. Jayathilaka D, Gomes L, Jeewandara C, Jayarathna GSB, Herath D, Perera PA, et al. Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat Commun. 2018;9(1):5242. https://doi.org/10.1038/s41467-018-07667-z

42. Changal KH, Raina AH, Raina A, Raina M, Bashir R, Latief M, et al. Differentiating secondary from primary dengue using IgG to IgM ratio in early dengue: an observational hospital based clinico-serological study from North India. BMC Infect Dis. 2016;16(1):715. https://doi.org/10.1186/s12879-016-2053-6

43. Kuno G, Vorndam AV, Gubler DJ, Gómez I. Study of anti-dengue NS1 antibody by western blot. J Med Virol. 1990;32(2):102-8. https://doi.org/10.1002/jmv.1890320207

44. Haselbeck AH, Im J, Prifti K, Marks F, Holm M, Zellweger RM. Serology as a tool to assess infectious disease landscapes and guide public health policy. Pathogens. 2022;11(7):732. https://doi.org/10.3390/pathogens11070732

45. Wilson SE, Deeks SL, Hatchette TF, Crowcroft NS. The role of seroepidemiology in the comprehensive surveillance of vaccine-preventable diseases. CMAJ. 2012;184(1):E70-6. https://doi.org/10.1503/cmaj.110506

Article Metrics
20 Views 8 Downloads 28 Total

Year

Month

Related Search

By author names